Sequence Learning via Bayesian Clustering by Dynamics | SpringerLink
Skip to main content

Sequence Learning via Bayesian Clustering by Dynamics

  • Chapter
  • First Online:
Sequence Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1828))

Abstract

Suppose one has a set of univariate time series generated by one or more unknown processes. The problem we wish to solve is to discover the most probable set of processes generating the data by clustering time series into groups so that the elements of each group have similar dynamics. For example, if a batch of time series represents sensory experiences of a mobile robot, clustering by dynamics might find clusters corresponding to abstractions of sensory inputs (Ramoni, Sebastiani, Cohen, Warwick, & Davis, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banfield, J. D., & Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, 49, 803–821.

    Article  MATH  MathSciNet  Google Scholar 

  • Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Cheeseman, P., & Stutz, J. (1996). Bayesian classification (AutoClass): Theory and results. In Advances in Knowledge Discovery and Data Mining, pp. 153–180. MIT Press, Cambridge, MA.

    Google Scholar 

  • Cooper, G. F., & Herskovitz, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.

    MATH  Google Scholar 

  • Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York, NY.

    MATH  Google Scholar 

  • Dawid, A. P., & Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21, 1272–1317. Correction ibidem, (1995), 23, 1864.

    Article  MATH  MathSciNet  Google Scholar 

  • Firoiu, L., & Cohen, P. (1999). Abstracting from robot sensor data using hidden Markov models. In Proceedings of the Sixteenth International Conference on Machine Learning (ICML-99), pp. 106–114. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Firoiu, L., Oates, T., & Cohen, P. (1998). Learning regular languages from positive evidence. In Proceedings of the Twentieth Annual Meeting of the Cognitive Science Society, pp. 350–355. Lawrence Erlbaum, Mahwah, NJ.

    Google Scholar 

  • Fisher, D. (2000). Conceptual clustering. In Klosgen, W., & Zytkow, J. (Eds.), Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford.

    Google Scholar 

  • Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via model-based cluster analysis. Tech. rep. 329, Department of Statistics, University of Washington.

    Google Scholar 

  • Friedman, N., Murphy, K., & Russell, S. (1998). Learning the structure of dynamic probabilistic networks. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pp. 139–147. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Good, I. J. (1968). The Estimation of Probability: An Essay on Modern Bayesian Methods. MIT Press, Cambridge, MA.

    Google Scholar 

  • Howe, A. E. (1992). Analyzing failure recovery to improve planner design. In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pp. 387–392. Morgan Kaufmann.

    Google Scholar 

  • Lio, P., & Goldman, N. (1998). Models of molecular evolution and phylogeny. Genome Research, 8, 1233–1244.

    Google Scholar 

  • MacDonald, I. L., & Zucchini, W. (1997). Hidden Markov and other Models for discrete-values Time Series. Chapman and Hall, London.

    Google Scholar 

  • Oates, T., & Cohen, P. (1996). Searching for structure in multiple streams of data. In Proceedings of the Thirteenth International Conference on Machine Learning, pp. 346–354. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Oates, T., Schmill, M., & Cohen, P. (1999). Identifying qualitatively different experiences: Experiments with a mobile robot. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99). Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Rabiner, L. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–285.

    Article  Google Scholar 

  • Ramoni, M., & Sebastiani, P. (1999). Bayesian methods. In Berthold, M., & Hand, D. J. (Eds.), Intelligent Data Analysis. An Introduction, pp. 129–166. Springer, New York, NY.

    Google Scholar 

  • Ramoni, M., Sebastiani, P., & Cohen, P. (2000). Multivariate clustering by dynamics. In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000). Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Ramoni, M., Sebastiani, P., Cohen, P., Warwick, J., & Davis, J. (1999). Bayesian clustering by dynamics. Tech. rep. KMi-TR-78, Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom.

    Google Scholar 

  • Ridgeway, G. (1998). Finite discrete markov process clustering. Tech. rep. MSR-TR-97-24, Microsoft Research, Redmond, WA.

    Google Scholar 

  • Rosenstein, M., & Cohen, P. (1998). Concepts from time series. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), pp. 739–745. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Ross, S. M. (1996). Stochastic Processes. Wiley, New York, NY.

    MATH  Google Scholar 

  • Saul, L. K., & Jordan, M. I. (1999). Mixed memory Markov models: Decomposing complex stochastic processes as mixture of simpler ones. Machine Learning, 37, 75–87.

    Article  MATH  Google Scholar 

  • Sebastiani, P., Ramoni, M., Cohen, P., Warwick, J., & Davis, J. (1999). Discovering dynamics using Bayesian clustering. In Proceedings of the Third International Symposium on Intelligent Data Analysis (IDA-99), pp. 199–209. Springer, New York, NY.

    Google Scholar 

  • Settimi, R., & Smith, J. Q. (1998). On the geometry of Bayesian graphical models with hidden variables. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pp. 472–479. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Smyth, P. (1997). Clustering sequences with hidden Markov models. In Mozer, M., Jordan, M., & Petsche, T. (Eds.), Advances in Neural Information Precessing, pp. 72–93. MIT Press, Cambridge, MA.

    Google Scholar 

  • Smyth, P. (1999). Probabilistic model-based clustering of multivariate and sequential data. In Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics (Uncertainty 99), pp. 299–304. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sebastiani, P., Ramoni, M., Cohen, P. (2000). Sequence Learning via Bayesian Clustering by Dynamics. In: Sun, R., Giles, C.L. (eds) Sequence Learning. Lecture Notes in Computer Science(), vol 1828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44565-X_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44565-X_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41597-8

  • Online ISBN: 978-3-540-44565-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics