Abstract
Suppose one has a set of univariate time series generated by one or more unknown processes. The problem we wish to solve is to discover the most probable set of processes generating the data by clustering time series into groups so that the elements of each group have similar dynamics. For example, if a batch of time series represents sensory experiences of a mobile robot, clustering by dynamics might find clusters corresponding to abstractions of sensory inputs (Ramoni, Sebastiani, Cohen, Warwick, & Davis, 1999).
Preview
Unable to display preview. Download preview PDF.
References
Banfield, J. D., & Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, 49, 803–821.
Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA.
Cheeseman, P., & Stutz, J. (1996). Bayesian classification (AutoClass): Theory and results. In Advances in Knowledge Discovery and Data Mining, pp. 153–180. MIT Press, Cambridge, MA.
Cooper, G. F., & Herskovitz, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.
Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York, NY.
Dawid, A. P., & Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21, 1272–1317. Correction ibidem, (1995), 23, 1864.
Firoiu, L., & Cohen, P. (1999). Abstracting from robot sensor data using hidden Markov models. In Proceedings of the Sixteenth International Conference on Machine Learning (ICML-99), pp. 106–114. Morgan Kaufmann, San Mateo, CA.
Firoiu, L., Oates, T., & Cohen, P. (1998). Learning regular languages from positive evidence. In Proceedings of the Twentieth Annual Meeting of the Cognitive Science Society, pp. 350–355. Lawrence Erlbaum, Mahwah, NJ.
Fisher, D. (2000). Conceptual clustering. In Klosgen, W., & Zytkow, J. (Eds.), Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford.
Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via model-based cluster analysis. Tech. rep. 329, Department of Statistics, University of Washington.
Friedman, N., Murphy, K., & Russell, S. (1998). Learning the structure of dynamic probabilistic networks. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pp. 139–147. Morgan Kaufmann, San Mateo, CA.
Good, I. J. (1968). The Estimation of Probability: An Essay on Modern Bayesian Methods. MIT Press, Cambridge, MA.
Howe, A. E. (1992). Analyzing failure recovery to improve planner design. In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pp. 387–392. Morgan Kaufmann.
Lio, P., & Goldman, N. (1998). Models of molecular evolution and phylogeny. Genome Research, 8, 1233–1244.
MacDonald, I. L., & Zucchini, W. (1997). Hidden Markov and other Models for discrete-values Time Series. Chapman and Hall, London.
Oates, T., & Cohen, P. (1996). Searching for structure in multiple streams of data. In Proceedings of the Thirteenth International Conference on Machine Learning, pp. 346–354. Morgan Kaufmann, San Mateo, CA.
Oates, T., Schmill, M., & Cohen, P. (1999). Identifying qualitatively different experiences: Experiments with a mobile robot. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99). Morgan Kaufmann, San Mateo, CA.
Rabiner, L. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–285.
Ramoni, M., & Sebastiani, P. (1999). Bayesian methods. In Berthold, M., & Hand, D. J. (Eds.), Intelligent Data Analysis. An Introduction, pp. 129–166. Springer, New York, NY.
Ramoni, M., Sebastiani, P., & Cohen, P. (2000). Multivariate clustering by dynamics. In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000). Morgan Kaufmann, San Mateo, CA.
Ramoni, M., Sebastiani, P., Cohen, P., Warwick, J., & Davis, J. (1999). Bayesian clustering by dynamics. Tech. rep. KMi-TR-78, Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom.
Ridgeway, G. (1998). Finite discrete markov process clustering. Tech. rep. MSR-TR-97-24, Microsoft Research, Redmond, WA.
Rosenstein, M., & Cohen, P. (1998). Concepts from time series. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), pp. 739–745. Morgan Kaufmann, San Mateo, CA.
Ross, S. M. (1996). Stochastic Processes. Wiley, New York, NY.
Saul, L. K., & Jordan, M. I. (1999). Mixed memory Markov models: Decomposing complex stochastic processes as mixture of simpler ones. Machine Learning, 37, 75–87.
Sebastiani, P., Ramoni, M., Cohen, P., Warwick, J., & Davis, J. (1999). Discovering dynamics using Bayesian clustering. In Proceedings of the Third International Symposium on Intelligent Data Analysis (IDA-99), pp. 199–209. Springer, New York, NY.
Settimi, R., & Smith, J. Q. (1998). On the geometry of Bayesian graphical models with hidden variables. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pp. 472–479. Morgan Kaufmann, San Mateo, CA.
Smyth, P. (1997). Clustering sequences with hidden Markov models. In Mozer, M., Jordan, M., & Petsche, T. (Eds.), Advances in Neural Information Precessing, pp. 72–93. MIT Press, Cambridge, MA.
Smyth, P. (1999). Probabilistic model-based clustering of multivariate and sequential data. In Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics (Uncertainty 99), pp. 299–304. Morgan Kaufmann, San Mateo, CA.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sebastiani, P., Ramoni, M., Cohen, P. (2000). Sequence Learning via Bayesian Clustering by Dynamics. In: Sun, R., Giles, C.L. (eds) Sequence Learning. Lecture Notes in Computer Science(), vol 1828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44565-X_2
Download citation
DOI: https://doi.org/10.1007/3-540-44565-X_2
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41597-8
Online ISBN: 978-3-540-44565-4
eBook Packages: Springer Book Archive