Introduction to Sequence Learning | SpringerLink
Skip to main content

Introduction to Sequence Learning

  • Chapter
  • First Online:
Sequence Learning

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1828))

Abstract

Sequential behavior is essential to intelligence, and it is a fundamental part of human activities ranging from reasoning to language, and from everyday skills to complex problem solving. In particular, sequence learning is an important component of learning in many task domains — planning, reasoning, robotics, natural language processing, speech recognition, adaptive control, time series prediction, financial engineering, DNA sequencing, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. Agre and D. Chapman, (1990). What are plans for? In: P. Maes, ed. Designing Autonomous Agents. Elsevier, New York.

    Google Scholar 

  • J. Anderson, (1995). Learning and Memory. John Wiley and Sons, New York.

    Google Scholar 

  • L. E. Baum, (1972). An inequality and associated maximization technique in statistical estimation for probabilistic functions of a Markov process. Inequalities, 3, 1–8.

    Google Scholar 

  • R. Bellman, (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • D. Bertsekas and J. Tsitsiklis, (1996). Neuro-Dynamic Programming. Athena Scientific, Belmont, MA.

    MATH  Google Scholar 

  • R. Dearden and Boutilier, (1997). Abstraction and approximate decision theoretic planning. Artificial Intelligence. 89, 219–283.

    Article  MATH  MathSciNet  Google Scholar 

  • P. Frasconi, M. Gori, and G. Soda, (1995). Recurrent neural networks and prior knowledge for sequence processing. Knowledge Based Systems. 8,6, 313–332.

    Article  Google Scholar 

  • C.L. Giles and M. Gori, (eds.) (1998). Adaptive Processing of Sequences and Data Structures. Springer, Heidelberg, Germany.

    Google Scholar 

  • C.L. Giles, B.G. Horne, and T. Lin, (1995). Learning a class of large finite state machines with a recurrent neural network. Neural Networks, 8(9), 1359–1365.

    Article  Google Scholar 

  • J. Grefenstette, The evolution of strategies for multiagent environments. Adaptive Behavior. 1(1). 65–90.

    Google Scholar 

  • I. Guyon et al, (1988). Storage and retrieval of complex sequences in neural networks. Physical Review A, 38, 6365–6372.

    Article  MathSciNet  Google Scholar 

  • L. Kaelbling, M. Littman, and A. Moore, (1996). Reinforcement learning: a survey. Journal of Artificial Intelligence Research, 4, 237–285.

    Google Scholar 

  • D. Kleinfeld and H. Sompolinsky, (1988). Associative neural network models for the generation of temporal patterns. Biophysics Journal, 54, 1039–1051.

    Article  Google Scholar 

  • N. Lavrac and S. Dzeroski, (1994). Inductive Logic Programming. Ellis Horword, New York.

    MATH  Google Scholar 

  • L. Lin, (1992). Self-improving reactive agents based on reinforcement learning, planning, and teaching. Machine Learning. 8, pp.293–321.

    Google Scholar 

  • A. McCallum, (1996). Learning to use selective attention and short-term memory in sequential tasks. Proc. Conference on Simulation of Adaptive Behavior. 315–324. MIT Press, Cambridge, MA.

    Google Scholar 

  • L. Meeden, (1995). An incremental approach to developing intelligent neural network controllers for robots. Adaptive Behavior.

    Google Scholar 

  • C. Nevill-Manning and I. Witten, (1997). Identifying hierarchical structure in sequences: a linear-time algorithm. Journal of Artificial Intelligence Research, 7, 67–82.

    MATH  Google Scholar 

  • S. Singh, (1994). Learning to Solve Markovian Decision Processes. Ph.D Thesis, University of Massachusetts, Amherst, MA.

    Google Scholar 

  • R. Sun, E. Merrill, and T. Peterson, (2000). From implicit skills to explicit knowledge: a bottom-up model of skill learning. Cognitive Science, in press.

    Google Scholar 

  • R. Sun and T. Peterson, (1998). Autonomous learning of sequential tasks: experiments and analyses. IEEE Transactions on Neural Networks, 9,6, pp.1217–1234.

    Article  Google Scholar 

  • R. Sun and T. Peterson, (1999). Multi-agent reinforcement learning: weighting and partitioning. Neural Networks, 12,4–5. pp.127–153.

    Google Scholar 

  • R. Sun and C. Sessions, (1998). Learning plans without a priori knowledge. Proceedings of WCCI-IJCNN’98, vol.1,1–6. IEEE Press, Piscataway, NJ. A longer version to appear in: Adaptive Behavior.

    Google Scholar 

  • R. Sun and C. Sessions, (2000). Self-segmentation of sequences: automatic formation of hierarchies of sequential behaviors. IEEE Transactions on Systems, Man, and Cybernetics: Part B Cybernetics, Vol.30, No.3, 403–418.

    Article  Google Scholar 

  • R. Sutton and A. Barto, (1997). Reinforcement Learning. MIT Press, Cambridge, MA.

    Google Scholar 

  • T. Tesauro, (1992). Practical issues in temporal difference learning. Machine Learning. 8, 257–277.

    MATH  Google Scholar 

  • C. Tham, (1995). Reinforcement learning of multiple tasks using a hierarchical CMAC architecture. Robotics and Autonomous Systems. 15, 247–274.

    Article  Google Scholar 

  • S. Thrun and A. Schwartz, (1995). Finding structure in reinforcement learning. Neural Information Processing Systems 7, MIT Press, Cambridge, MA.

    Google Scholar 

  • L. Wang and D. Alkon, (eds.) (1993). Artificial Neural Networks: Oscillations, Chaos, and Sequence Processing. IEEE Computer Society Press, Los Alamitos, CA.

    MATH  Google Scholar 

  • C. Watkins, (1989). Learning with Delayed Rewards. Ph.D Thesis, Cambridge University, Cambridge, UK.

    Google Scholar 

  • S. Wermter et al, (ed.) (1996). Connectionist and Statistical Approaches to Natural Language Processing. Springer, Heidelberg, Germany.

    Google Scholar 

  • D. Willingham, M. Nissen, and P. Bullemer, (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition. 15, 1047–1060.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sun, R. (2000). Introduction to Sequence Learning. In: Sun, R., Giles, C.L. (eds) Sequence Learning. Lecture Notes in Computer Science(), vol 1828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44565-X_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-44565-X_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41597-8

  • Online ISBN: 978-3-540-44565-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics