Abstract
This paper formulates properties of similarity measures. We list a number of similarity measures, some of which are not well known (such as the Monge-Kantorovich metric), or newly introduced (re ection metric), and give a set constructions that have been used in the design of some similarity measures.
supported by Philips Research
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal shapes. Annals of Mathematics and Artificial Intelligence, pages 251–265, 1995.
H. Alt, U. Fuchs, G. Rote, and G. Weber. Matching convex shapes with respect to the symmetric difference. In Proc. ESA, pages 320–333. LNCS 1136, Springer, 1996.
H. Alt and M. Godeau. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, pages 75–91, 1995.
E. Arkin, P. Chew, D. Huttenlocher, K. Kedem, and J. Mitchel. An effciently computable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):209–215, 1991.
A. J. Baddeley. An error metric for binary images. In Robust Computer Vision: Quality of Vision Algorithms, Proc. of the Int. Workshop on Robust Computer Vision, Bonn, 1992, pages 59–78. Wichmann
L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg, and D. Kravets. Geometric pattern matching under Euclidean motion. Computational Geometry, Theory and Applications, 7:113–124, 1997.
P. Chew and K. Kedem. Improvements on approximate pattern matching. In 3rd Scandinav. Workshop Algorithm Theory, LNCS 621, pages 318–325. Springer, 1992.
S. D. Cohen and L. J. Guibas. Partial matching of planar polylines under similarity transformations. In Proc. SODA, pages 777–786, 1997.
G. Cortelazzo, G. A. Mian, G. Vezzi, and P. Zamperoni. Trademark shapes description by string-matching techniques. Pattern Recognition, 27:1005–1018, 1994.
A. Efrat and A. Itai. Improvements on bottleneck matching and related problems using geometry. Proc. SoCG, pages 301–310, 1996.
R. Fagin and L. Stockmeyer. Relaxing the triangle inequality in pattern matching. Int. Journal of Computer Vision, 28(3):219–231, 1998.
R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, and C. Yap. Simultaneous inner and outer approximation of shapes. Algorithmica, 8:365–389, 1992.
D. Fry. Shape Recognition using Metrics on the Space of Shapes. PhD thesis, Harvard University, Department of Mathematics, 1993.
M. Hagedoorn and R. C. Veltkamp. Metric pattern spaces. Technical Report UU-CS-1999-03, Utrecht University, 1999.
M. Hagedoorn and R. C. Veltkamp. Reliable and efficient pattern matching using an affine invariant metric. Int. Journal of Computer Vision, 31(2/3):203–225, 1999.
D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under EuWWW.clidean motion in the plane. In Proc. SoCG, pages 110–120, 1992.
D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi surfaces and its applications. Discrete and Comp. Geometry, 9:267–291, 1993.
D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the hausdorff distance. IEEE Transactions on Pattern Analysis and Machinen Intelligence, 15:850–863, 1993.
Plato. Meno. Perseus Encyclopedia, Tuft University, http://www.perseus.tufts. edu/Texts/chunk_TOC.grk.html#Plato, 380 B.C.
S. Rachev. The Monge-Kantorovich mass transference problem and its stochastical applications. Theory of Probability and Applications, 29:647–676, 1985.
Y. Rubner, C. Tomassi, and L Guibas. A metric for distributions with applications to image databases. In Proc. of the IEEE Int. Conf. on Comp. Vision, Bombay, India, pages 59–66, 1998.
W. Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance. LNCS. Springer, 1996.
S. Schirra. Approximate decision algorithms for approximate congruence. Information Processing Letters, 43:29–34, 1992.
L. Schomaker, E. de Leau, and L. Vuurpijl. Using pen-based outlines for object-based annotation and image-based queries. In Visual Information and Information Systems, LNCS 1614, pages 585–592. Springer, 1999.
A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.
J. Vleugels and R. C. Veltkamp. Efficient image retrieval through vantage objects. In Visual Information and Information Systems, LNCS 1614, pages 575–584. Springer, 1999.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Veltkamp, R.C., Hagedoorn, M. (2000). Shape Similarity Measures, Properties and Constructions. In: Laurini, R. (eds) Advances in Visual Information Systems. VISUAL 2000. Lecture Notes in Computer Science, vol 1929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-40053-2_41
Download citation
DOI: https://doi.org/10.1007/3-540-40053-2_41
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-41177-2
Online ISBN: 978-3-540-40053-0
eBook Packages: Springer Book Archive