Morphological Texture Analysis Using Optimization of Structuring Elements | SpringerLink
Skip to main content

Morphological Texture Analysis Using Optimization of Structuring Elements

  • Conference paper
  • First Online:
Geometry, Morphology, and Computational Imaging

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2616))

Abstract

This paper proposes a method of texture analysis using morphological size distribution. Our framework is based on the concept that a texture is described by estimation of primitive, size distribution of grains derived from the primitive, and spatial distribution of the grains. We concentrate on estimation of primitive using an assumption on grain size distribution. We assume a model that grains are derived from one primitive, and a uniform size distribution since we consider target textures containing grains of various sizes. Thus the structuring element used for the measurement of size distribution is optimized to obtain the most uniform size density function. The optimized structuring element is an estimate of the primitive under the assumption. Simulated annealing algorithm is employed for the optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ojala T. and Pietikäinen M., “Texture classification” in R.B. Fisher, ed., CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision. (http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OJALA1/texclas.htm)

  2. Asano, A.: Texture Analysis Using Morphological Pattern Spectrum and Optimization of Structuring Elements. Proc. 10th International Conference on Image Analysis and Processing (1999) 209–214

    Google Scholar 

  3. Asano, A., Miyagawa, M., and Fujio, M.: Texture Modelling by Optimal Gray Scale Structuring Elements using Morphological Pattern Spectrum. Proc. 15th International Conference on Pattern Recognition 3 (2000) 479–482

    Google Scholar 

  4. Gimel’farb, G.: “Characteristic interaction structures in Gibbs texture modelling” in J. Blanc-Talon and D. Popescu, eds., Imaging and Vision Systems: Theory, Assessment and Applications. Nova Science Publishers (2001) 71–90

    Google Scholar 

  5. Heijmans, H. J.A. M.: Morphological Image Operators. Academic Press (1994)

    Google Scholar 

  6. Maragos, P.: Pattern Spectrum and Multiscale Shape Representation. IEEE Trans. Pattern Anal. Machine Intell. 11 (1989) 701–706

    Article  MATH  Google Scholar 

  7. Dougherty, E.R., Newell, J. T., and Pelz, J.B.: Morphological Texture-Based Maximuml-Likelihood Pixel Classification Based on Local Granulometric Moments. Pattern Recognition 25 (1992) 1181–1198

    Google Scholar 

  8. Sand, F. and Dougherty, E.R.: Asymptotic granulometric mixing theorem: morphological estimation of sizing parameters and mixture proportions. Pattern Recognition 31 (1998) 53–61

    Google Scholar 

  9. Sand, F. and Dougherty, E.R.: Robustness of granulometric moments. Pattern Recognition 32 (1999) 1657–1665

    Google Scholar 

  10. Serra, J.: Image Analysis and Mathematical Morphology Academic Press (1982)

    Google Scholar 

  11. Asano, A., Ohkubo, T., Muneyasu, M., and Hinamoto, T.: Texture Primitive Description Using Morphological Skeleton. Proc. International Symposium on Mathematical Morphology VI (2002) 101–108

    Google Scholar 

  12. Asano, A., Endo, J., and Muraki C.: Multiprimitive Texture Analysis Using Cluster Analysis and Size Density Function. Proc. International Symposium on Mathematical Morphology VI (2002) 109–116 152

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Asano, A., Miyagawa, M., Fujio, M. (2003). Morphological Texture Analysis Using Optimization of Structuring Elements. In: Asano, T., Klette, R., Ronse, C. (eds) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol 2616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36586-9_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-36586-9_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00916-0

  • Online ISBN: 978-3-540-36586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics