Inverse Quantization for Resolution Conversion | SpringerLink
Skip to main content

Inverse Quantization for Resolution Conversion

  • Conference paper
  • First Online:
Geometry, Morphology, and Computational Imaging

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2616))

Abstract

In this paper, we introduce a resolution-conversion method for two- and three-dimensional discrete objects. We first derive a method for boundary extraction, second, introduce a method for the estimation of a smooth boundary, and third, construct an algorithm for resolution conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Imiya, A., Eckhardt, U., Curvature flow in discrete space, Lecture Notes in Computer Science, 2001, Vol. 2243, 229–249.

    Google Scholar 

  2. Isomichi, Y., Inverse-quantization method for digital signals and images: Pointapproximation type, Trans. IECE, 63A, 815–821, 1980.

    Google Scholar 

  3. Terzopoulos, D., The computation of visible-surface representations, IEEE, Trans, PAMI, 10, 417–438, 1988.

    MATH  Google Scholar 

  4. Lu, F., Milios, E. E., Optimal spline fitting to plane shape, Signal Processing 37 129–140, 1994.

    Article  Google Scholar 

  5. Wahba, G., Surface fitting with scattered noisy data on Euclidean D-space and on the sphere, Rocky Mountain Journal of Mathematics, 14, 281–299, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  6. Wahba, G., Johnson, D.R., Partial spline models for the inclusion of tropopause and frontal boundary information in otherwise smooth two-and threedimensional objective analysis, J. Atmospheric and Oceanic Technology, 3, 714–725, 1986.

    Article  Google Scholar 

  7. Chen, M. H., Chin, R.T., Partial smoothing spline for noisy+boundary with corners, IEEE Trans. PAMI, 15, 1208–1216, 1993.

    Google Scholar 

  8. Paglieroni, D., Jain, A.K., Control point transformation for shape representation and measurement, Computer Graphics and Image Processing, 42, 87–111, 1988.

    Article  Google Scholar 

  9. Medioni, G., Yasumoto, Y., Corner detection and curve representation using cubic B-spline, Computer Graphics and Image Processing, 39, 267–278, 1987.

    Article  Google Scholar 

  10. Langridge, D. J., Curve encoding and the detection of discontinuities, Computer Graphics and Image Processing, 20, 58–71, 1982.

    Article  Google Scholar 

  11. Daubechies, I., Guskov, I., Sweldens, W., Regularity of irregular subdivision, Constructive Approximation, 15, 381–426, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  12. Daubechies, I., Guskov, I., Schröder, P., Sweldens, W., Wavelets on irregular point sets, Phil. Trans. R. Soc. Lond. A, to be published.

    Google Scholar 

  13. Imiya, A., Ito, A., Kenmochi, Y., Inverse quantization of digital binary images for resolution conversion, LNCS 2106 Springer: Berlin, 426–434.

    Google Scholar 

  14. Boechm, W., Prautzsch, H., Numerical Methods, AK Peters, MA, 1992.

    Google Scholar 

  15. Fisher, M., On hearing the shape of a dram, Journal of Combinatorial Theory, 1, pp.105–125, 1966.

    Article  MATH  Google Scholar 

  16. Collatz, L.,Eigenwertaufgeben mit Technichen Anwendungen, Akademische Verlagsgesellshaft, Leipzig 1949.

    Google Scholar 

  17. Collatz, L., Sinogowitz, U., Spektren sndicher Grafen, Abhandlungen aus dem Mathematischen Seminar der Universtaet Hamburg, Band 21, pp.63–77, 1957.

    MATH  MathSciNet  Google Scholar 

  18. Collatz, L.,Numerische Behandlung von Differntalgleichhaungen, Springer, Berlin, 1955. 290 English translation: The Numerical Treatment of Differential Equations, Springer, Berlin, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torii, A., Ichinose, T., Wakazono, Y., Imiya, A. (2003). Inverse Quantization for Resolution Conversion. In: Asano, T., Klette, R., Ronse, C. (eds) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol 2616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36586-9_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-36586-9_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00916-0

  • Online ISBN: 978-3-540-36586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics