The Commutation with Codes and Ternary Sets of Words | SpringerLink
Skip to main content

The Commutation with Codes and Ternary Sets of Words

  • Conference paper
  • First Online:
STACS 2003 (STACS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2607))

Included in the following conference series:

  • 906 Accesses

Abstract

We prove several results on the commutation of languages. First, we prove that the largest set commuting with a given code X, i.e., its centralizer C(X), is always ρ(X)., where ρ(X) is the primitive rootof X. Using this result, we characterize the commutation with codes similarly as for words, polynomials, and formal power series: a language commutes with X if and only if it is a union of powers of ρ(X). This solves a conjecture of Ratoandromanana, 1989, and also gives an affermative answer to a special case of an intriguing problem raised by Conway in 1971. Second, we prove that for any nonperiodic ternary set of words F ⊆∑+,C(F) = F*., and moreover, a language commutes with F if and only if it is a union of powers of F, results previously known only for ternary codes. A boundary point is thus established, as these results do not hold for all languages with at least four words.

Work supported by Academy of Finland under grant 44087

Current address: Department of Computer Science, Åbo Akademi University, Turku 20520, Finland, ipetre@abo..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Autebert, J.M., Boasson, L., Latteux, M.: Motifs et bases de langages, RAIRO Inform. Theor., 23(4) (1989) 379–393.

    MathSciNet  MATH  Google Scholar 

  2. Bergman, G.: Centralizers in free associative algebras, Transactions of the American Mathematical Society 137 (1969) 327–344.

    Article  MATH  MathSciNet  Google Scholar 

  3. Berstel, J., Perrin, D.: Theory of Codes, Academic Press, New York (1985).

    MATH  Google Scholar 

  4. Choffrut, C., Karhumäki, J.: Combinatorics of Words. In Rozenberg, G., Salomaa, A. (eds.), Handbook of Formal Languages, Vol. 1, Springer-Verlag (1997) 329–438.

    Google Scholar 

  5. Choffrut, C., Karhumäki, J.: On Fatou properties of rational languages, in Martin-Vide, C., Mitrana, V. (eds.), Where mathematics, Computer Science, Linguistics and Biology Meet, Kluwer, Dordrecht (2000).

    Google Scholar 

  6. Choffrut, C., Karhumäki, J., Ollinger, N.: The commutation of finite sets: a challenging problem, Theoret. Comput. Sci., 273 (1–2) (2002) 69–79.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohn, P.M.: Factorization in noncommuting power series rings, Proc. Cambridge Philos. Soc. 58 (1962) 452–464.

    Google Scholar 

  8. Cohn, P.M.: Centralisateurs dans les corps libres, in Berstel, J. (ed.), Sℰies formelles, Paris, (1978) 45–54.

    Google Scholar 

  9. Conway, J.H.: Regular Algebra and Finite Machines, Chapman Hall (1971).

    Google Scholar 

  10. Devolder, J., Latteux, M., Litovsky, I., Staiger, L.: Codes and infinite words, Acta Cybernetica 11 (1994) 241–256.

    MATH  MathSciNet  Google Scholar 

  11. Harju, T., Petre, I.: On commutation and primitive roots of codes, submitted. A preliminary version of this paper has been presented at WORDS 2001, Palermo, Italy.

    Google Scholar 

  12. Karhumäki, J.: Challenges of commutation: an advertisement, in Proc. of FCT 2001, LNCS 2138, Springer (2001) 15–23.

    Google Scholar 

  13. Karhumäki, J., Petre, I.: On the centralizer of a finite set, in Proc. of ICALP 2000, LNCS 1853, Springer (2000) 536–546.

    Google Scholar 

  14. Karhumäki, J., Petre, I.: Conway’s Problem for three-word sets, Theoret. Comput. Sci., 289/1 (2002) 705–725.

    Article  MATH  MathSciNet  Google Scholar 

  15. Karhumäki, J., Petre, I.: Conway’s problem and the commutation of languages, Bulletin of EATCS 74 (2001) 171–177.

    MATH  Google Scholar 

  16. Karhumäki, J., Petre, I.: The branching point approach to Conway’s problem, LNCS 2300, Springer (2002) 69–76.

    Google Scholar 

  17. Lothaire, M.: Combinatorics on Words (Addison-Wesley, Reading, MA., (1983).

    Google Scholar 

  18. Lothaire, M.: Algebraic Combinatorics on Words (Cambridge University Press), (2002).

    Google Scholar 

  19. Mateescu, A., Salomaa, A., Yu, S.: On the decomposition of finite languages, TUCS Technical Report 222, http://www.tucs../ (1998).

  20. Petre, I.: Commutation Problems on Sets of Words and Formal Power Series, PhD Thesis, University of Turku (2002).

    Google Scholar 

  21. Ratoandromanana, B.: Codes et motifs, RAIRO Inform. Theor., 23(4) (1989) 425–444.

    MathSciNet  MATH  Google Scholar 

  22. Restivo, A.: Some decision results for recognizable sets in arbitrary monoids, in Proc. of ICALP 1978, LNCS 62 Springer (1978) 363–371.

    Google Scholar 

  23. Shyr, H.J.: Free monoids and languages, Hon Min Book Company, (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karhumäki, J., Latteux, M., Petre, I. (2003). The Commutation with Codes and Ternary Sets of Words. In: Alt, H., Habib, M. (eds) STACS 2003. STACS 2003. Lecture Notes in Computer Science, vol 2607. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36494-3_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-36494-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00623-7

  • Online ISBN: 978-3-540-36494-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics