Abstract
We extend a systematic method for the derivation of high order schemes for affinely controlled nonlinear systems to a larger class of systems in which the control variables are allowed to appear nonlinearly in multiplicative terms. Using an adaptation of the stochastic Taylor expansion to control systems we construct Taylor schemes of arbitrary high order and indicate how derivative free Runge-Kutta type schemes can be obtained.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
L. Arnold, Random Dynamical Systems. Springer-Verlag, Heidelberg (1998)
F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser, Boston, 2000.
Cyganowski, S., Grüne, L., and Kloeden, P.E.: Maple for Stochastic Differential Equations. In: Blowey, J.F., Coleman, J.P., Craig, A.W. (eds.): Theory and Numerics of Differential Equations, Springer-Verlag, Heidelberg (2001) 127–178.
Deuflhard, P.: Stochastic versus Deterministic Numerical ODE Integration. In: Platen, E. (ed.): Proc. 1st Workshop on Stochastic Numerics, Berlin, WIAS Berlin, Preprint Nr. 21 (1992) 16–20.
Falcone, M. and Ferretti, R.: Discrete Time High-Order Schemes for Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Numer. Math., 67 (1994) 315–344.
Ferretti, R.: Higher-Order Approximations of Linear Control Systems via Runge-Kutta Schemes. Computing, 58 (1997) 351–364.
Grüne, L.: An Adaptive Grid Scheme for the Discrete Hamilton-Jacobi-Bellman Equation. Numer. Math., 75 (1997) 319–337.
Grüne, L.: Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization, Lecture Notes in Mathematics, 1783, Springer-Verlag, Heidelberg (2002)
Grüne, L. and Kloeden, P.E.: Higher Order Numerical Schemes for Affinely Controlled Nonlinear Systems. Numer. Math., 89 (2001) 669–690.
Grüne, L. and Kloeden, P.E.: Pathwise Approximation of Random Ordinary Differential Equations. BIT, 41 (2001) 710–721.
Isidori, A.: Nonlinear Control Systems. An Introduction. Second edition, Springer-Verlag, Heidelberg (1995)
Hairer, E., Norsett, S.P. and Wanner, G.: Solving Ordinary Differential Equations I. Springer-Verlag, Heidelberg (1988)
Kloeden, P.E. and Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Heidelberg (1992) (3rd revised and updated printing, 1999)
Veliov, V.: On the Time Discretization of Control Systems. SIAM J. Control Optim., 35 (1997) 1470–1486.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grüne, L., Kloeden, P.E. (2003). Numerical Schemes of Higher Order for a Class of Nonlinear Control Systems. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds) Numerical Methods and Applications. NMA 2002. Lecture Notes in Computer Science, vol 2542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36487-0_23
Download citation
DOI: https://doi.org/10.1007/3-540-36487-0_23
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-00608-4
Online ISBN: 978-3-540-36487-0
eBook Packages: Springer Book Archive