Numerical Schemes of Higher Order for a Class of Nonlinear Control Systems | SpringerLink
Skip to main content

Numerical Schemes of Higher Order for a Class of Nonlinear Control Systems

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2542))

Included in the following conference series:

  • 1173 Accesses

Abstract

We extend a systematic method for the derivation of high order schemes for affinely controlled nonlinear systems to a larger class of systems in which the control variables are allowed to appear nonlinearly in multiplicative terms. Using an adaptation of the stochastic Taylor expansion to control systems we construct Taylor schemes of arbitrary high order and indicate how derivative free Runge-Kutta type schemes can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. Arnold, Random Dynamical Systems. Springer-Verlag, Heidelberg (1998)

    MATH  Google Scholar 

  2. F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser, Boston, 2000.

    Google Scholar 

  3. Cyganowski, S., Grüne, L., and Kloeden, P.E.: Maple for Stochastic Differential Equations. In: Blowey, J.F., Coleman, J.P., Craig, A.W. (eds.): Theory and Numerics of Differential Equations, Springer-Verlag, Heidelberg (2001) 127–178.

    Google Scholar 

  4. Deuflhard, P.: Stochastic versus Deterministic Numerical ODE Integration. In: Platen, E. (ed.): Proc. 1st Workshop on Stochastic Numerics, Berlin, WIAS Berlin, Preprint Nr. 21 (1992) 16–20.

    Google Scholar 

  5. Falcone, M. and Ferretti, R.: Discrete Time High-Order Schemes for Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Numer. Math., 67 (1994) 315–344.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ferretti, R.: Higher-Order Approximations of Linear Control Systems via Runge-Kutta Schemes. Computing, 58 (1997) 351–364.

    Article  MATH  MathSciNet  Google Scholar 

  7. Grüne, L.: An Adaptive Grid Scheme for the Discrete Hamilton-Jacobi-Bellman Equation. Numer. Math., 75 (1997) 319–337.

    Article  MATH  MathSciNet  Google Scholar 

  8. Grüne, L.: Asymptotic Behavior of Dynamical and Control Systems under Perturbation and Discretization, Lecture Notes in Mathematics, 1783, Springer-Verlag, Heidelberg (2002)

    MATH  Google Scholar 

  9. Grüne, L. and Kloeden, P.E.: Higher Order Numerical Schemes for Affinely Controlled Nonlinear Systems. Numer. Math., 89 (2001) 669–690.

    Article  MATH  MathSciNet  Google Scholar 

  10. Grüne, L. and Kloeden, P.E.: Pathwise Approximation of Random Ordinary Differential Equations. BIT, 41 (2001) 710–721.

    Article  Google Scholar 

  11. Isidori, A.: Nonlinear Control Systems. An Introduction. Second edition, Springer-Verlag, Heidelberg (1995)

    Google Scholar 

  12. Hairer, E., Norsett, S.P. and Wanner, G.: Solving Ordinary Differential Equations I. Springer-Verlag, Heidelberg (1988)

    Google Scholar 

  13. Kloeden, P.E. and Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Heidelberg (1992) (3rd revised and updated printing, 1999)

    MATH  Google Scholar 

  14. Veliov, V.: On the Time Discretization of Control Systems. SIAM J. Control Optim., 35 (1997) 1470–1486.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grüne, L., Kloeden, P.E. (2003). Numerical Schemes of Higher Order for a Class of Nonlinear Control Systems. In: Dimov, I., Lirkov, I., Margenov, S., Zlatev, Z. (eds) Numerical Methods and Applications. NMA 2002. Lecture Notes in Computer Science, vol 2542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36487-0_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-36487-0_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00608-4

  • Online ISBN: 978-3-540-36487-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics