Abstract
This paper presents a conception of fast and useful inference process in knowledge based systems. The main known weakness is long and not smart process of looking for rules during the inference process. Basic inference algorithm, which is used by the rule interpreter, tries to fit the facts to rules in knowledge base. So it takes each rule and tries to execute it. As a result we receive the set of new facts, but it often contains redundant information unexpected for user. The main goal of our works is to discover the methods of inference process controlling, which allow us to obtain only necessary decision information. The main idea of them is to create rules partitions, which can drive inference process. That is why we try to use the hierarchical clustering to agglomerate the rules.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
1. Anderberg M.R. (1973) Cluster analysis for applications. New York, Academic Press.
2. Dubes R.C., Jain A.K. (1998) Algorithms for clustering data. Prentice Hall.
3. Everitt B.S. (1993) Cluster Analysis (3rd edition). Edward Arnold / Halsted Press. London.
4. Kaufman L., Rousseeuw P.J. (1990) Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley Sons, New York.
5. Koronacki J., åwik J. (2005) Statystyczne systemy uczące się. WNT, Warszawa.
6. Nowak A., Simiñski R. (2003) Wybrane zagadnienia implementacji wieloplatformowego modułu wnioskowania wstecz Infer v 2.0 dla systemu z regułową reprezentacją wiedzy - schemat bazy wiedzy i budowa struktur danych. Materiały V-tej Konferencji Naukowej Inżynieria Wiedzy i Systemy Ekspertowe. Wrocław, Poland,(in polish).
7. Nowak A., Wakulicz-Deja A., Bachliñski S. (2005) Optimization of Speech Recognition by Clustering of Phones. Concurrency, Speci.cation and Concurrency 2005 - Ruciane-Nida, Poland.
8. Nowak A., Wakulicz-Deja A. (2005) The concept of the hierarchical clustering algorithms for rules based systems. Intelligent Information Systems 2005 - New Trends in Intelligent Information Processing and Web Mining, Gdask, Poland.
9. Simiñski R., Wakulicz-Deja A. (2000) Veri.cation of Rule Knowledge Bases Using Decision Units. Advances in Soft Computing, Intelligent Information Systems, Physica-Verlag, Springer Verlag Company.
10. Simiñski R.,Wakulicz-Deja A. (2003) Decision units as a tool for rule base modeling and veri.cation. Advances in Soft Computing. Physica-Verlag, Springer Verlag Company.
11. Simiñski R., Wakulucz-Deja A. (2004) Application of Decision Units in Knowledge Engineering. Lecture Notes in Arti.cial Intelligence. Springer-Verlag.
12. Stąpor K. (2005) Automatyczna klasy.kacja obiektów. Akademicka O.cyna Wydawnicza EXIT, Warszawa.
13. Theodoridis S., Koutroumbas K. (1999) Patern Recognition. Academic Press.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer
About this paper
Cite this paper
Nowak, A., Siminski, R., Wakulicz-Deja, A. (2006). Towards Modular Representation of Knowledge Base. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33521-8_46
Download citation
DOI: https://doi.org/10.1007/3-540-33521-8_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33520-7
Online ISBN: 978-3-540-33521-4
eBook Packages: EngineeringEngineering (R0)