Towards Modular Representation of Knowledge Base | SpringerLink
Skip to main content

Towards Modular Representation of Knowledge Base

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 35))

Abstract

This paper presents a conception of fast and useful inference process in knowledge based systems. The main known weakness is long and not smart process of looking for rules during the inference process. Basic inference algorithm, which is used by the rule interpreter, tries to fit the facts to rules in knowledge base. So it takes each rule and tries to execute it. As a result we receive the set of new facts, but it often contains redundant information unexpected for user. The main goal of our works is to discover the methods of inference process controlling, which allow us to obtain only necessary decision information. The main idea of them is to create rules partitions, which can drive inference process. That is why we try to use the hierarchical clustering to agglomerate the rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. 1. Anderberg M.R. (1973) Cluster analysis for applications. New York, Academic Press.

    MATH  Google Scholar 

  2. 2. Dubes R.C., Jain A.K. (1998) Algorithms for clustering data. Prentice Hall.

    Google Scholar 

  3. 3. Everitt B.S. (1993) Cluster Analysis (3rd edition). Edward Arnold / Halsted Press. London.

    Google Scholar 

  4. 4. Kaufman L., Rousseeuw P.J. (1990) Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley Sons, New York.

    Google Scholar 

  5. 5. Koronacki J., åwik J. (2005) Statystyczne systemy uczące się. WNT, Warszawa.

    Google Scholar 

  6. 6. Nowak A., Simiñski R. (2003) Wybrane zagadnienia implementacji wieloplatformowego modułu wnioskowania wstecz Infer v 2.0 dla systemu z regułową reprezentacją wiedzy - schemat bazy wiedzy i budowa struktur danych. Materiały V-tej Konferencji Naukowej Inżynieria Wiedzy i Systemy Ekspertowe. Wrocław, Poland,(in polish).

    Google Scholar 

  7. 7. Nowak A., Wakulicz-Deja A., Bachliñski S. (2005) Optimization of Speech Recognition by Clustering of Phones. Concurrency, Speci.cation and Concurrency 2005 - Ruciane-Nida, Poland.

    Google Scholar 

  8. 8. Nowak A., Wakulicz-Deja A. (2005) The concept of the hierarchical clustering algorithms for rules based systems. Intelligent Information Systems 2005 - New Trends in Intelligent Information Processing and Web Mining, Gdask, Poland.

    Google Scholar 

  9. 9. Simiñski R., Wakulicz-Deja A. (2000) Veri.cation of Rule Knowledge Bases Using Decision Units. Advances in Soft Computing, Intelligent Information Systems, Physica-Verlag, Springer Verlag Company.

    Google Scholar 

  10. 10. Simiñski R.,Wakulicz-Deja A. (2003) Decision units as a tool for rule base modeling and veri.cation. Advances in Soft Computing. Physica-Verlag, Springer Verlag Company.

    Google Scholar 

  11. 11. Simiñski R., Wakulucz-Deja A. (2004) Application of Decision Units in Knowledge Engineering. Lecture Notes in Arti.cial Intelligence. Springer-Verlag.

    Google Scholar 

  12. 12. Stąpor K. (2005) Automatyczna klasy.kacja obiektów. Akademicka O.cyna Wydawnicza EXIT, Warszawa.

    Google Scholar 

  13. 13. Theodoridis S., Koutroumbas K. (1999) Patern Recognition. Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Nowak, A., Siminski, R., Wakulicz-Deja, A. (2006). Towards Modular Representation of Knowledge Base. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33521-8_46

Download citation

  • DOI: https://doi.org/10.1007/3-540-33521-8_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33520-7

  • Online ISBN: 978-3-540-33521-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics