Behavioral Patterns in Hypermedia Systems: A Short Study of E-commerce vs. E-learning Practices | SpringerLink
Skip to main content

Behavioral Patterns in Hypermedia Systems: A Short Study of E-commerce vs. E-learning Practices

  • Chapter
Adaptive and Personalized Semantic Web

Part of the book series: Studies in Computational Intelligence ((SCI,volume 14))

Abstract

Web based systems are extremely popular to both end users and developers thanks to their ease of use and cost effectiveness respectively. Two of the most popular applications of web based systems nowadays are e-learning and e-commerce. Despite their differences, both types of applications are facing similar challenges: they rely on a “pull” model of information flow, they are hypermedia based, they use similar techniques for adaptation and they benefit from semantic technologies [3]. The underlying business models also share the same basic principle: users access digital resources from a distance without the physical presence of a teacher or a seller. The above mentioned similarities suggest that, at least, some user behavioral patterns are similar to both applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aberg J., Shahmehri N., Maciuszek D. (2001). User modelling for live help systems: initial results. Proceedings of the 3rd ACM conference on Electronic Commerce, pp. 194–197

    Google Scholar 

  2. Brusilovsky P., Maybury M.T. (2002). From adaptive hypermedia to adaptive Web. Communications of the ACM, 45(5):31–33

    Article  Google Scholar 

  3. Brusilovsky P., Nejdl W. (2004). Adaptive hypermedia and adaptive web. In: Singh M., (ed) Practical Handbook of Internet Computing. Chapman & Hall/CRC

    Google Scholar 

  4. Chakrabarti S., (2002). Mining the Web: Analysis of Hypertext and Semi Structured Data. Morgan Kaufmann

    Google Scholar 

  5. Chen MS., Jong J.S., Yu P.S. (1998). IEEE Transactions on Knowledge and Data Engineering, 10(2):209–221

    Article  Google Scholar 

  6. De Bra P. (2002). Adaptive educational hypermedia on the web. Communications of the ACM, 45(5):60–61

    Google Scholar 

  7. De Bra P., Brusilovsky P., Houben G.J. (1999). Adaptive hypermedia: from systems to framework. ACM Computing Surveys (CSUR), 31(4), Article No. 12

    Google Scholar 

  8. Dolog P., Henze N., Nejdl W., Sintek M., (2004). Personalization in Distributed e-Learning Environments. In Proceedings of 13th World Wide Web Conference, pp. 170–179

    Google Scholar 

  9. Duffy T.M., Jonassen D.H. (1992). Constructivism and the Technology of Instruction: A Conversation. Lawrence Erlbaum Associates.

    Google Scholar 

  10. Eirinaki M., Vazirgiannis M. (2003). Web mining for web personalization. ACM Transactions on Internet Technology (TOIT), 3(1):1–27

    Article  Google Scholar 

  11. Gams E., Reich S. (2004). An analysis of the applicability of user trails in web applications. 2004 Web Engineering Workshop

    Google Scholar 

  12. Han J., Kamber M. (2001). Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco

    Google Scholar 

  13. Kim D.H., Atluri V., Bieber M., Adam N., Yesha Y., (2004). Web personalization: A clickstream-based collaborative filtering personalization model: towards a better performance. Proceedings of the 6th annual ACM international workshop on Web information and data management, pp. 88–95

    Google Scholar 

  14. Li L., Zaiane O.R. (2004) Combining Usage, Content and Structure Data to Improve Web Site Recommendation. 5th International Conference on Electronic Commerce and Web Technologies (EC-Web 04), Springer Verlag LNCS 3182, pp. 305–315

    Google Scholar 

  15. Mendes E., Mosley N., Counsell S. (2003). Do adaptation rules improve web cost estimation?. Proceedings of the fourteenth ACM conference on Hypertext and hypermedia, Nottingham, UK, pp. 173–183

    Google Scholar 

  16. Moe W. (2001) Buying, searching, or browsing: Differentiating between online shoppers using in-store navigational clickstream. Journal of Consumer Psychology, 13(1&2):29–40

    Article  Google Scholar 

  17. Pierrakos D., Paliouras G., Papatheodorou Ch, Spyropoulos C.D. (2003). Web Usage Mining as a Tool for Personalization: A Survey. User Modeling and User- Adapted Interaction, 13(4):311–372

    Article  Google Scholar 

  18. Rumetshofer H., Wöβ W. (2003). An approach for adaptable learning systems with respect to psychological aspects. 2003 ACM Symposium on Applied Computing (SAC 2003), pp. 558–563

    Google Scholar 

  19. Schewe K.D., Thalheim B., Binemann-Zdanowicz A., Kaschek R., Kuss T., Tschiedel B (2005). A Conceptual View of Web-Based E-Learning Systems. Education and Information Technologies, 10(1&2):83–110

    Article  Google Scholar 

  20. Spiliopoulou M., Pohle C., Teltzrow M. (2002). Modelling Web Site Usage with Sequences of Goal-Oriented Tasks. Multikonferenz Wirtschaftsinformatik, in: E-Commerce – Netze, Märkte, Technologien, Physica-Verlag, Heidelberg

    Google Scholar 

  21. Srikant R., Yang Y. (2001). Mining Web Logs to Improve Web Site Organization. Proc. Of the WWW01 Conference, pp. 430–437

    Google Scholar 

  22. Srivastava J., Cooley R., Deshpande M., Tan P.N. (2000), Web usage mining: discovery and applications of usage patterns fromWeb data. ACM SIGKDD Explorations Newsletter, 1(2):12–23

    MATH  Google Scholar 

  23. Stash N., Cristea A., De Bra P. (2004). Authoring of Learning Styles in Adaptive Hypermedia: Problems and Solutions.WWW 2004, May 17–22, 2004, New York, New York, USA, pp. 114, 123

    Google Scholar 

  24. Strachan L., Anderson J., Sneesby M., Evans M. (2000). Minimalist User Modelling in a Complex Commercial Software System. User Modeling and User- Adapted Interaction, 10(2–3):109–146

    Article  Google Scholar 

  25. Tsiriga V., Virvou M. (2004). A Framework for the Initialization of Student Models in Web-based Intelligent Tutoring Systems. User Modeling and User- Adapted Interaction, 14(4):289–316

    Article  Google Scholar 

  26. Vassiliadis B., Makris C., Tsakalidis A., Bogonikolos N. (2003). User Modelling for Adapting and Adaptable Information Retrieval. Journal of Applied System Studies, 4(1)

    Google Scholar 

  27. Wang L., Meinel C. (2004). Behaviour Recovery and Complicated Pattern Definition in Web Usage Mining. In: Koch N., Fraternali P., Wirsing M (eds.) LNCS 3140. Springer-Verlag Berlin Heidelberg, pp. 531–543

    Google Scholar 

  28. Wolf C. (2003). iWeaver: Towards ‘Learning Style’-based e-Learning in Computer Science Education. Australasian Computing Education Conference (ACE2003), Adelaide, Proceedings of the fifth Australasian computing education conference on Computing education 2003 - Volume 20, pp. 273–279

    Google Scholar 

  29. Wu H., Gordon M.D., DeMaagd K., Bos N. (2003). Link analysis for collaborative knowledge building. Proceedings of the fourteenth ACM conference on Hypertext and hypermedia, Nottingham, UK, pp. 216–217

    Google Scholar 

  30. Xenos M., Pierrakeas C, Pintelas P. (2002). Survey on Student Dropout Rates and Dropout Causes Concerning the Students in the Course of Informatics of the Hellenic Open University. Computers & Education, 39(4):361–377

    Article  Google Scholar 

  31. Zaki M.J. (2002). Efficiently Mining Frequent Trees in a Forest. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, Edmonton, Alberta, Canada, pp. 71–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Stefani, A., Vassiliadis, B., Xenos, M. (2006). Behavioral Patterns in Hypermedia Systems: A Short Study of E-commerce vs. E-learning Practices. In: Sirmakessis, S. (eds) Adaptive and Personalized Semantic Web. Studies in Computational Intelligence, vol 14. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33279-0_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-33279-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30605-4

  • Online ISBN: 978-3-540-33279-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics