Abstract
Web based systems are extremely popular to both end users and developers thanks to their ease of use and cost effectiveness respectively. Two of the most popular applications of web based systems nowadays are e-learning and e-commerce. Despite their differences, both types of applications are facing similar challenges: they rely on a “pull” model of information flow, they are hypermedia based, they use similar techniques for adaptation and they benefit from semantic technologies [3]. The underlying business models also share the same basic principle: users access digital resources from a distance without the physical presence of a teacher or a seller. The above mentioned similarities suggest that, at least, some user behavioral patterns are similar to both applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aberg J., Shahmehri N., Maciuszek D. (2001). User modelling for live help systems: initial results. Proceedings of the 3rd ACM conference on Electronic Commerce, pp. 194–197
Brusilovsky P., Maybury M.T. (2002). From adaptive hypermedia to adaptive Web. Communications of the ACM, 45(5):31–33
Brusilovsky P., Nejdl W. (2004). Adaptive hypermedia and adaptive web. In: Singh M., (ed) Practical Handbook of Internet Computing. Chapman & Hall/CRC
Chakrabarti S., (2002). Mining the Web: Analysis of Hypertext and Semi Structured Data. Morgan Kaufmann
Chen MS., Jong J.S., Yu P.S. (1998). IEEE Transactions on Knowledge and Data Engineering, 10(2):209–221
De Bra P. (2002). Adaptive educational hypermedia on the web. Communications of the ACM, 45(5):60–61
De Bra P., Brusilovsky P., Houben G.J. (1999). Adaptive hypermedia: from systems to framework. ACM Computing Surveys (CSUR), 31(4), Article No. 12
Dolog P., Henze N., Nejdl W., Sintek M., (2004). Personalization in Distributed e-Learning Environments. In Proceedings of 13th World Wide Web Conference, pp. 170–179
Duffy T.M., Jonassen D.H. (1992). Constructivism and the Technology of Instruction: A Conversation. Lawrence Erlbaum Associates.
Eirinaki M., Vazirgiannis M. (2003). Web mining for web personalization. ACM Transactions on Internet Technology (TOIT), 3(1):1–27
Gams E., Reich S. (2004). An analysis of the applicability of user trails in web applications. 2004 Web Engineering Workshop
Han J., Kamber M. (2001). Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco
Kim D.H., Atluri V., Bieber M., Adam N., Yesha Y., (2004). Web personalization: A clickstream-based collaborative filtering personalization model: towards a better performance. Proceedings of the 6th annual ACM international workshop on Web information and data management, pp. 88–95
Li L., Zaiane O.R. (2004) Combining Usage, Content and Structure Data to Improve Web Site Recommendation. 5th International Conference on Electronic Commerce and Web Technologies (EC-Web 04), Springer Verlag LNCS 3182, pp. 305–315
Mendes E., Mosley N., Counsell S. (2003). Do adaptation rules improve web cost estimation?. Proceedings of the fourteenth ACM conference on Hypertext and hypermedia, Nottingham, UK, pp. 173–183
Moe W. (2001) Buying, searching, or browsing: Differentiating between online shoppers using in-store navigational clickstream. Journal of Consumer Psychology, 13(1&2):29–40
Pierrakos D., Paliouras G., Papatheodorou Ch, Spyropoulos C.D. (2003). Web Usage Mining as a Tool for Personalization: A Survey. User Modeling and User- Adapted Interaction, 13(4):311–372
Rumetshofer H., Wöβ W. (2003). An approach for adaptable learning systems with respect to psychological aspects. 2003 ACM Symposium on Applied Computing (SAC 2003), pp. 558–563
Schewe K.D., Thalheim B., Binemann-Zdanowicz A., Kaschek R., Kuss T., Tschiedel B (2005). A Conceptual View of Web-Based E-Learning Systems. Education and Information Technologies, 10(1&2):83–110
Spiliopoulou M., Pohle C., Teltzrow M. (2002). Modelling Web Site Usage with Sequences of Goal-Oriented Tasks. Multikonferenz Wirtschaftsinformatik, in: E-Commerce – Netze, Märkte, Technologien, Physica-Verlag, Heidelberg
Srikant R., Yang Y. (2001). Mining Web Logs to Improve Web Site Organization. Proc. Of the WWW01 Conference, pp. 430–437
Srivastava J., Cooley R., Deshpande M., Tan P.N. (2000), Web usage mining: discovery and applications of usage patterns fromWeb data. ACM SIGKDD Explorations Newsletter, 1(2):12–23
Stash N., Cristea A., De Bra P. (2004). Authoring of Learning Styles in Adaptive Hypermedia: Problems and Solutions.WWW 2004, May 17–22, 2004, New York, New York, USA, pp. 114, 123
Strachan L., Anderson J., Sneesby M., Evans M. (2000). Minimalist User Modelling in a Complex Commercial Software System. User Modeling and User- Adapted Interaction, 10(2–3):109–146
Tsiriga V., Virvou M. (2004). A Framework for the Initialization of Student Models in Web-based Intelligent Tutoring Systems. User Modeling and User- Adapted Interaction, 14(4):289–316
Vassiliadis B., Makris C., Tsakalidis A., Bogonikolos N. (2003). User Modelling for Adapting and Adaptable Information Retrieval. Journal of Applied System Studies, 4(1)
Wang L., Meinel C. (2004). Behaviour Recovery and Complicated Pattern Definition in Web Usage Mining. In: Koch N., Fraternali P., Wirsing M (eds.) LNCS 3140. Springer-Verlag Berlin Heidelberg, pp. 531–543
Wolf C. (2003). iWeaver: Towards ‘Learning Style’-based e-Learning in Computer Science Education. Australasian Computing Education Conference (ACE2003), Adelaide, Proceedings of the fifth Australasian computing education conference on Computing education 2003 - Volume 20, pp. 273–279
Wu H., Gordon M.D., DeMaagd K., Bos N. (2003). Link analysis for collaborative knowledge building. Proceedings of the fourteenth ACM conference on Hypertext and hypermedia, Nottingham, UK, pp. 216–217
Xenos M., Pierrakeas C, Pintelas P. (2002). Survey on Student Dropout Rates and Dropout Causes Concerning the Students in the Course of Informatics of the Hellenic Open University. Computers & Education, 39(4):361–377
Zaki M.J. (2002). Efficiently Mining Frequent Trees in a Forest. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, Edmonton, Alberta, Canada, pp. 71–80
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer
About this chapter
Cite this chapter
Stefani, A., Vassiliadis, B., Xenos, M. (2006). Behavioral Patterns in Hypermedia Systems: A Short Study of E-commerce vs. E-learning Practices. In: Sirmakessis, S. (eds) Adaptive and Personalized Semantic Web. Studies in Computational Intelligence, vol 14. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-33279-0_4
Download citation
DOI: https://doi.org/10.1007/3-540-33279-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30605-4
Online ISBN: 978-3-540-33279-4
eBook Packages: EngineeringEngineering (R0)