PCA and ICA Methods for Prediction Results Enhancement | SpringerLink
Skip to main content

PCA and ICA Methods for Prediction Results Enhancement

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 31))

  • 881 Accesses

Abstract

In this paper we show that applying of multidimensional decompositions can improve the modelling results. The predictions usually consist of twofold elements, wanted and destructive ones. Rejecting of the destructive components should improve the model. The statistical methods like PCA and ICA with new modifications are employed. The example from the telecom market proofs correctness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amari S., Cichocki A., and Yang H.H. (1996) A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems, NIPS-1995 8, MIT Press, Cambridge, MA, 757–763

    Google Scholar 

  2. Bradley A.P. (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 30(7), 1145–1159

    Article  Google Scholar 

  3. Cichocki A., Amari S. (2002) Adaptive Blind Signal and Image Processing. John Wiley, Chichester

    Google Scholar 

  4. Cichocki A., Sabala I., Choi S., Orsier B., Szupiluk R. (1997) Self adaptive independent component analysis for sub-Gaussian and super-Gaussian mixtures with unknown number of sources and additive noise. NOLTA-97 2, Hawaii, USA, 731–734

    Google Scholar 

  5. Cruces S., Cichocki A., Castedo L. (1999) An iterative inversion method for blind source separation. Proc. of the 1st Int. Workshop on Independent Component Analysis and Blind Signal Separation (ICA’99), Assois, France, 307–312

    Google Scholar 

  6. Greene W.H. (2000) Econometric analysis, NJ Prentice Hall

    Google Scholar 

  7. Groth R., Data Mining. Building Competitive Advantage, Prentice Hall Inc., Upper Saddle River, New Jersey

    Google Scholar 

  8. Hoeting J., Madigan D., Raftery A., and Volinsky C. (1999) Bayesian model averaging: a tutorial. Statistical Science 14, 382–417

    Article  MathSciNet  Google Scholar 

  9. Hyvärinen A., Karhunen J., Oja E. (2001) Independent Component Analysis. John Wiley

    Google Scholar 

  10. Jolliffe I.T. (2002) Principal Component Analysis. Springer Verlag

    Google Scholar 

  11. Kennedy R.L. (ed.), Lee Y., van Roy B., Reed C., and Lippman R.P. (1997) Solving Data Mining Problems with Pattern Recognition. Prentice Hall

    Google Scholar 

  12. Kidmose P. (2000) Alpha-Stable Distributions in Signal Processing of Audio Signals. 41st Conf. on Simulation and Modeling, Scandinavian Simulation Society SIMS, 87–94

    Google Scholar 

  13. Kidmose P. (2001) Independent Component Analysis Using the Spectral Measure for Alpha-Stable Distributions. Proc. of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP

    Google Scholar 

  14. Nikias C.L., Shao M. (1995) Signal Processing with Alpha-Stable Distributions and Applications. John Wiley and Sons

    Google Scholar 

  15. Samorodnitskij G., Taqqu M.S. (1994) Stable non-Gaussian random processes: stochastic models with infinitive variance. Chapman and Hall, New York

    Google Scholar 

  16. Schwarz G. (1978) Estimating the Dimension of a Model. The Annals of Statistics 6, 461–471

    MATH  MathSciNet  Google Scholar 

  17. Szupiluk R., Wojewnik P., Zźbkowski T. (2004) Independent Component Analysis for Filtration in Data Mining. Proc. of IIPWM’04 Conf., Zakopane, Poland. Advances in Soft Computing, Springer Verlag, Berlin, 117–128

    Google Scholar 

  18. Szupiluk R., Wojewnik P., Zźbkowski T. (2004) Model Improvement by the Statistical Decomposition. Artificial Intelligence and Soft Computing-ICAISC 2004. Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 1199–1204

    Google Scholar 

  19. Szupiluk R., Wojewnik P., Zźbkowski T., Siwek K. (2004) Independent Component Analysis with α-Stable Distributions. VI International Workshop Computational Problems of Electrical Engineering, Zakopane, Poland

    Google Scholar 

  20. Therrien C.W. (1992) Discrete Random Signals and Statistical Signal Processing. Prentice Hall, New Jersey

    Google Scholar 

  21. Yang Y. (2001) Adaptive regression by mixing. Journal of American Statistical Association 96, 574–588

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Szupiluk, R., Wojewnik, P., Zőbkowski, T. (2005). PCA and ICA Methods for Prediction Results Enhancement. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32392-9_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-32392-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25056-2

  • Online ISBN: 978-3-540-32392-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics