A study on Monte Carlo Gene Screening | SpringerLink
Skip to main content

A study on Monte Carlo Gene Screening

  • Conference paper
Intelligent Information Processing and Web Mining

Part of the book series: Advances in Soft Computing ((AINSC,volume 31))

Abstract

In the paper, three conceptually simple but computer-intensive versions of an approach to selecting informative genes for classification are proposed. All of them rely on multiple construction of a tree classifier for many training sets randomly chosen from the original sample set, where samples in each training set consist of only a fraction of all of the genes. It is argued that the resulting ranking of genes can then be used to advantage for classification via a classifier of any type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alizadeh, A.A. et al.: Distinct Types of Diffuse Large B-cell Lymphoma Identified by Expression Profiling. Nature 403, (2000), 503–511.

    Article  Google Scholar 

  2. Breiman, L. et al.: Classification and Regression Trees. Wadsworth International Group, 1984.

    Google Scholar 

  3. Dramiński M., Koronacki J., Ćwik J., Komorowski J. Monte Carlo gene screening for supervised classification Proceedings of the EUROFUSE 2004, B. De Baets, R. De Caluwe, G. De Tr, J. Fodor, J. Kacprzyk, S. Zadrozny (Eds.), pp., Exit (2004).

    Google Scholar 

  4. Simon, R. et al.: Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification. J. National Cancer Inst. 95 (2003), 14–18

    Article  Google Scholar 

  5. Speed, T. [ed.]: Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC, 2003.

    Google Scholar 

  6. Tibshirani, R. et al.: Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays. Statistical Science 18, 104–117.

    Google Scholar 

  7. Tibshirani, R. et al.: Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays. Statistical Science 18, 104–117.

    Google Scholar 

  8. Wittenn Ian H., Eibe Frank: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dramiński, M., Koronacki, J., Komorowski, J. (2005). A study on Monte Carlo Gene Screening. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32392-9_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-32392-9_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25056-2

  • Online ISBN: 978-3-540-32392-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics