Abstract
In the paper, three conceptually simple but computer-intensive versions of an approach to selecting informative genes for classification are proposed. All of them rely on multiple construction of a tree classifier for many training sets randomly chosen from the original sample set, where samples in each training set consist of only a fraction of all of the genes. It is argued that the resulting ranking of genes can then be used to advantage for classification via a classifier of any type.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alizadeh, A.A. et al.: Distinct Types of Diffuse Large B-cell Lymphoma Identified by Expression Profiling. Nature 403, (2000), 503–511.
Breiman, L. et al.: Classification and Regression Trees. Wadsworth International Group, 1984.
Dramiński M., Koronacki J., Ćwik J., Komorowski J. Monte Carlo gene screening for supervised classification Proceedings of the EUROFUSE 2004, B. De Baets, R. De Caluwe, G. De Tr, J. Fodor, J. Kacprzyk, S. Zadrozny (Eds.), pp., Exit (2004).
Simon, R. et al.: Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification. J. National Cancer Inst. 95 (2003), 14–18
Speed, T. [ed.]: Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC, 2003.
Tibshirani, R. et al.: Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays. Statistical Science 18, 104–117.
Tibshirani, R. et al.: Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays. Statistical Science 18, 104–117.
Wittenn Ian H., Eibe Frank: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco, 2000.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dramiński, M., Koronacki, J., Komorowski, J. (2005). A study on Monte Carlo Gene Screening. In: Kłopotek, M.A., Wierzchoń, S.T., Trojanowski, K. (eds) Intelligent Information Processing and Web Mining. Advances in Soft Computing, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32392-9_36
Download citation
DOI: https://doi.org/10.1007/3-540-32392-9_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25056-2
Online ISBN: 978-3-540-32392-1
eBook Packages: EngineeringEngineering (R0)