Efficient Implementation of Nearest Neighbor Classification | SpringerLink
Skip to main content

Efficient Implementation of Nearest Neighbor Classification

  • Conference paper
Computer Recognition Systems

Part of the book series: Advances in Soft Computing ((AINSC,volume 30))

  • 1553 Accesses

Abstract

An efficient approach to Nearest Neighbor classification is presented, which improves performance by exploiting the ability of superscalar processors to issue multiple instructions per cycle and by using the memory hierarchy adequately. This is accomplished by the use of floating-point arithmetic which outperforms integer arithmetic, and block (tiled) algorithms which exploit the data locality of programs allowing an efficient use of the data stored in the cache memory.

This work was supported by the Comissionat per a Universitats i Recerca of the Generalitat de Catalunya (BE94/Annex 3-642 and BE94-A1/110) and the Ministerio de Educación y Ciencia of Spain (TIN2004-07739-C02-01)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 34319
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 42899
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. Anderson, J. Dongarra, LAPACK User’s Guide, SIAM, Philadelphia, 1992.

    Google Scholar 

  2. P. Baglietto, M. Maresca, M. Migliardi, Image Processing on High-Performance RISC Systems, Proceedings of the IEEE, 84(7):917–930, July 1996.

    Article  Google Scholar 

  3. S. Bandyopadhyay and U. Maulik Effcient prototype reordering in nearest neighbor classification, Pattern Recognition 35(12):2791–2799, Dec. 2002.

    Article  MATH  Google Scholar 

  4. Z. Chi, J. Wu and H. Yan, Handwritten numeral recognition using self-organizing maps and fuzzy rules, Pattern Recognition, 28(1):59–66, 1995.

    Article  Google Scholar 

  5. B.V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques, IEEE Computer Society Press, 1991.

    Google Scholar 

  6. Digital Equip. Corp., DECchip 21064 and DECchip 21064A Alpha AXP Microprocessors-Hardware Ref. Manual, 1994.

    Google Scholar 

  7. C. Decaestecker, Finding Prototypes for Nearest Neighbor Classification by Means of Gradient Descent and Deterministic Annealing, Pattern Recognition, 30(2):281–288, 1997.

    Article  Google Scholar 

  8. A. Djouadi, E. Bouktache, A Fast Algorithm for the Nearest-Neighbor Classifier, IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(3):277–282, 1997.

    Article  Google Scholar 

  9. J. Fu, T.S. Huang, VLSI for Pattern Recognition and Image Processing, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  10. P.J. Grother, G.T. Candela and J.L. Blue, Fast Implementation of Nearest Neighbor Classifiers, Pattern Recognition, 30(3):459–465, 1997.

    Article  Google Scholar 

  11. Y. Harnamoto, S. Uchimura and S. Tornita, A Bootstrap Technique for Nearest Neighbor Classifier Design, IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(1):73–79, 1997.

    Article  Google Scholar 

  12. R. Van Der Heiden and F.C.A. Groen, The Box-Cox Metric for Nearest Neighbor Classification Improvement, Pattern Recognition, 30(2):273–279, 1997.

    Article  Google Scholar 

  13. Hewlett Packard, PA-RISC 1.1 Architecture and Instruction Set Reference Manual, 1994.

    Google Scholar 

  14. T. Kohonen, The self-organizing map, Proc. of the IEEE 78(9):1464–1480, 1990.

    Article  Google Scholar 

  15. M. Kudo, N. Masuyamaa, J. Toyamaa and M. Shimbob, Simple termination conditions for k-nearest neighbor method, Pattern Recognition Letters 24(9–10):1203–1213, June 2003.

    Article  MATH  Google Scholar 

  16. M. Lam, Software Pipelining: An Effective Technique for VLIW Machines, Proc. of the SIGPLAN’88, pp 318–328.

    Google Scholar 

  17. M.S. Lam, E.E. Rothberg and M.E. Wolf, The Cache Performance and Optimizations of Blocked Algorithms, ASPLOS 1991, pp. 67–74.

    Google Scholar 

  18. E.W. Lee and S.I. Chae, Fast Design of Reduced-Complexity Nearest-Neighbor Classifiers Using Triangular Inequality, IEEE Trans. on Pattern Analysis and Machine Intelligence, 20(5):562–566, 1998.

    Article  MathSciNet  Google Scholar 

  19. C.-L. Liu, H. Sako, H. Fujisawa, Performance evaluation of pattern classifiers for handwritten character recognition, Int. J. on Document Analysis and Recognition 4:191–204, 2002.

    Article  Google Scholar 

  20. J.J. Navarro, A. Juan and T. Lang, MOB Forms: A Class of Multilevel Block Algorithms for Dense Linear Algebra Computations, ACM Int. Conf. Supercomputing, 1994, pp. 354–363.

    Google Scholar 

  21. F. Ricci and P. Avesani, Data Compression and Local Metrics for Nearest Neighbor Classification, IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(4):380–384, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrero, J.R., Navarro, J.J. (2005). Efficient Implementation of Nearest Neighbor Classification. In: Kurzyński, M., Puchała, E., Woźniak, M., żołnierek, A. (eds) Computer Recognition Systems. Advances in Soft Computing, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-32390-2_19

Download citation

  • DOI: https://doi.org/10.1007/3-540-32390-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25054-8

  • Online ISBN: 978-3-540-32390-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics