Abstract
The autonomous detection and handling of faults is an important skill for mobile robot systems. Faults in the motion-control system can strongly decrease the robots’ performance or compromise its mission completely. In this paper, we demonstrate how a mobile robot system can, in case of a fault, switch to a richer internal system model and estimate the newly introduced parameters to reliably diagnose its state and possibly continue its operation. We discuss three methods for sequential parameter estimation using particle filters and evaluate their performance in physically accurate simulation runs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Williams, B.C., Nayak, P.P.: A model-based approach to reactive self-conguring systems. In Minker, J., ed.: Workshop on Logic-Based Articial Intelligence, Washington, DC, June 14–16, 1999, College Park, Maryland, Computer Science Department, University of Maryland (1999)
Washington, R.: on-board real-time state and fault identication for rovers (2000)
Koller, D., Lerner, U.: Sampling in Factored Dynamic Systems. In: Sequential Monte Carlo Methods in Practice. Springer (2001) 445–464
Ng, B., Peshkin, L., Pfeer, A.: Factored particles for scalable monitoring. In: Proceedings of the Eighteenth Conf. on Uncertainty in Articial Intelligence. (2002)
Verma, V., Thrun, S., Simmons, R.G.: Variable resolution particle lter. In: IJCAI. (2003) 976–984
Dearden, R., Clancy, D.: Particle lters for real-time fault detection in planetary rovers. In: Proceedings of the Thirteenth International Workshop on Principles of Diagnosis. (2002) 1–6
Ng, B., Pfeer, A., Dearden, R.: Continuous time particle ltering. In: Proceedings of the 19th International Joint Conference on Articial Intelligence (IJCAI), Edinburgh. (2005)
Thrun, S.: Particle lters in robotics (2002)
de Freitas, N., Dearden, R., Hutter, F., MoralesMenendez, R., Mutch, J., Poole, D.: Diagnosis by a waiter and a mars explorer (2003)
Driessen, J., Boers, Y.: An ecient particle lter for nonlinear jump markov systems. In: IEE Seminar Target Tracking: Algorithms and Applications, Sussex, UK, March 23–24. (2004)
Thrun, S., Burgard, W., Fox, D. In: Probabilistic Robotics. MIT Press (2005)
Gordon, N.J.: Bayesian methods for tracking. PhD thesis, Imperial College, University of London (1993)
Andrieu, C, de Freitas, J., Doucet, A.: Sequential mcmc for bayesian model selection (1999)
Liu, J., West, M.: Combined parameter and state estimation in simulation-based ltering. In A. Doucet, J.F.G.D.F., Gordon, N.J., eds.: Sequential Monte Carlo Methods in Practice. New York, Springer-Verlag, New York (2000)
Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator, technical report. Technical report, USC Center for Robotics and Embedded Systems, CRES-04-002 (2004)
Smith, R.: Open dynamics engine. http://www.q12.org/ode/ode.html (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Plagemann, C., Burgard, W. (2006). Sequential Parameter Estimation for Fault Diagnosis in Mobile Robots Using Particle Filters. In: Levi, P., Schanz, M., Lafrenz, R., Avrutin, V. (eds) Autonome Mobile Systeme 2005. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30292-1_25
Download citation
DOI: https://doi.org/10.1007/3-540-30292-1_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30291-9
Online ISBN: 978-3-540-30292-6
eBook Packages: Computer Science and Engineering (German Language)