Sequential Parameter Estimation for Fault Diagnosis in Mobile Robots Using Particle Filters | SpringerLink
Skip to main content

Sequential Parameter Estimation for Fault Diagnosis in Mobile Robots Using Particle Filters

  • Conference paper
Autonome Mobile Systeme 2005

Part of the book series: Informatik aktuell ((INFORMAT))

  • 2932 Accesses

Abstract

The autonomous detection and handling of faults is an important skill for mobile robot systems. Faults in the motion-control system can strongly decrease the robots’ performance or compromise its mission completely. In this paper, we demonstrate how a mobile robot system can, in case of a fault, switch to a richer internal system model and estimate the newly introduced parameters to reliably diagnose its state and possibly continue its operation. We discuss three methods for sequential parameter estimation using particle filters and evaluate their performance in physically accurate simulation runs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7569
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14699
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams, B.C., Nayak, P.P.: A model-based approach to reactive self-conguring systems. In Minker, J., ed.: Workshop on Logic-Based Articial Intelligence, Washington, DC, June 14–16, 1999, College Park, Maryland, Computer Science Department, University of Maryland (1999)

    Google Scholar 

  2. Washington, R.: on-board real-time state and fault identication for rovers (2000)

    Google Scholar 

  3. Koller, D., Lerner, U.: Sampling in Factored Dynamic Systems. In: Sequential Monte Carlo Methods in Practice. Springer (2001) 445–464

    Google Scholar 

  4. Ng, B., Peshkin, L., Pfeer, A.: Factored particles for scalable monitoring. In: Proceedings of the Eighteenth Conf. on Uncertainty in Articial Intelligence. (2002)

    Google Scholar 

  5. Verma, V., Thrun, S., Simmons, R.G.: Variable resolution particle lter. In: IJCAI. (2003) 976–984

    Google Scholar 

  6. Dearden, R., Clancy, D.: Particle lters for real-time fault detection in planetary rovers. In: Proceedings of the Thirteenth International Workshop on Principles of Diagnosis. (2002) 1–6

    Google Scholar 

  7. Ng, B., Pfeer, A., Dearden, R.: Continuous time particle ltering. In: Proceedings of the 19th International Joint Conference on Articial Intelligence (IJCAI), Edinburgh. (2005)

    Google Scholar 

  8. Thrun, S.: Particle lters in robotics (2002)

    Google Scholar 

  9. de Freitas, N., Dearden, R., Hutter, F., MoralesMenendez, R., Mutch, J., Poole, D.: Diagnosis by a waiter and a mars explorer (2003)

    Google Scholar 

  10. Driessen, J., Boers, Y.: An ecient particle lter for nonlinear jump markov systems. In: IEE Seminar Target Tracking: Algorithms and Applications, Sussex, UK, March 23–24. (2004)

    Google Scholar 

  11. Thrun, S., Burgard, W., Fox, D. In: Probabilistic Robotics. MIT Press (2005)

    Google Scholar 

  12. Gordon, N.J.: Bayesian methods for tracking. PhD thesis, Imperial College, University of London (1993)

    Google Scholar 

  13. Andrieu, C, de Freitas, J., Doucet, A.: Sequential mcmc for bayesian model selection (1999)

    Google Scholar 

  14. Liu, J., West, M.: Combined parameter and state estimation in simulation-based ltering. In A. Doucet, J.F.G.D.F., Gordon, N.J., eds.: Sequential Monte Carlo Methods in Practice. New York, Springer-Verlag, New York (2000)

    Google Scholar 

  15. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator, technical report. Technical report, USC Center for Robotics and Embedded Systems, CRES-04-002 (2004)

    Google Scholar 

  16. Smith, R.: Open dynamics engine. http://www.q12.org/ode/ode.html (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plagemann, C., Burgard, W. (2006). Sequential Parameter Estimation for Fault Diagnosis in Mobile Robots Using Particle Filters. In: Levi, P., Schanz, M., Lafrenz, R., Avrutin, V. (eds) Autonome Mobile Systeme 2005. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-30292-1_25

Download citation

Publish with us

Policies and ethics