Weakest preconditions: Categorical insights | SpringerLink
Skip to main content

Weakest preconditions: Categorical insights

  • Part II Research Contributions
  • Chapter
  • First Online:
Category Theory and Computer Programming

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 240))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Arbib and E. G. Manes, Partially-additive categories and the semantics of flow diagrams, Journal of Algebra 62, 1980, 203–227.

    Google Scholar 

  2. M. A. Arbib and E. G. Manes, The pattern-of-calls expansion is the canonical fixpoint for recursive definitions, Journal ACM 29, 1982, 557–602.

    Google Scholar 

  3. S. L. Bloom and R. Tindell, Compatible orderings on the metric theory of trees, SIAM Journal of Computing 9, 1980, 683–691.

    Google Scholar 

  4. E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, 1976.

    Google Scholar 

  5. C. C. Elgot, Monadic computation and iterative algebraic theories, in "Proceedings of Logic Colloquium '73" (H. E. Rose and J. C. Shepherdson, Eds.), North-Holland, Amsterdam, 1975.

    Google Scholar 

  6. D. Gries, The Science of Programming, Springer-Verlag, 1983.

    Google Scholar 

  7. I. Guessarian, Algebraic Semantics, Lecture Notes in Computer Science 99, Springer-Verlag, 1981.

    Google Scholar 

  8. C. A. R. Hoare, An axiomatic basis for computer programming, Communications ACM 12, 1969, 576–580, 583.

    Google Scholar 

  9. E. G. Manes, Additive Domains, Proceedings of the Conference on Mathematical Foundations of Programming Languages, Kansas State U., Springer-Verlag, to appear.

    Google Scholar 

  10. E. G. Manes, Assertion semantics in a control category, submitted to Theoretical Computer Science.

    Google Scholar 

  11. E. G. Manes and M. A. Arbib, Algebraic Approaches to Program Semantics, Springer-Verlag, 1986 (in press).

    Google Scholar 

  12. E. G. Manes and D. B. Benson, The inverse semigroup of a sum-ordered semiring, Semigroup Forum 31, 1985, 129–152.

    Google Scholar 

  13. D. S. Scott, Lattice theory, data types and semantics, in R. Rustin (Ed.), Formal Semantics of Programming Languages, Prentice-Hall, 1970, 65–106.

    Google Scholar 

  14. D. S. Scott, The lattice of flow diagrams, Lecture Notes in Computer Science 188, Springer-Verlag, 1971, 311–366.

    Google Scholar 

  15. M. E. Steenstrup, Sum-Ordered Partial Semirings, Ph.D. thesis, COINS Technical Report #85-01, 1985; Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Pitt Samson Abramsky Axel Poigné David Rydeheard

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manes, E.G. (1986). Weakest preconditions: Categorical insights. In: Pitt, D., Abramsky, S., Poigné, A., Rydeheard, D. (eds) Category Theory and Computer Programming. Lecture Notes in Computer Science, vol 240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-17162-2_122

Download citation

  • DOI: https://doi.org/10.1007/3-540-17162-2_122

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17162-1

  • Online ISBN: 978-3-540-47213-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics