References
BUCHBERGER B., 1965/85: Gröbner Bases — An Algorithmic Method in Polynomial Ideal Theory. Chapter 6 in N.K. Boss (ed.): ‘Multidimensional Systems Theory', R.Reidel Publ.Comp.
CHOU S.C., SCHELTER W.F., 1986: Proving Geometry Theorems with Rewrite Rules. Subm. to J. of Automated Reasoning.
KAPUR D., 1986: Geometry Theorem Proving Using Gröbner Bases. To appear as application letter in the J. of Symbolic Computation.
KUTZLER B., STIFTER S., 1986a: Automated Geometry Theorem Proving Using Buchberger's Algorithm. To appear in the Proc. of SYMSAC'86, Waterloo, Canada.
KUTZLER B., STIFTER S., 1986b: On the Application of Buchberger's Algorithm for Automated Geometry Theorem Proving. To appear as application letter in the J. of Symbolic Computation.
WU W.T., 1978/84: Basic Principles of Mechanical Theorem Proving in Elementary Geometries. Journal of System Sciences and Mathematical Sciences, vol. 4, no. 3, pp. 207–235.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kutzler, B., Stifter, S. (1986). A geometry theorem prover based on Buchberger's algorithm. In: Siekmann, J.H. (eds) 8th International Conference on Automated Deduction. CADE 1986. Lecture Notes in Computer Science, vol 230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16780-3_141
Download citation
DOI: https://doi.org/10.1007/3-540-16780-3_141
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-16780-8
Online ISBN: 978-3-540-39861-5
eBook Packages: Springer Book Archive