Some upper bounds for the multiplicity of an autoreduced subset of N m and their applications | SpringerLink
Skip to main content

Some upper bounds for the multiplicity of an autoreduced subset of Nm and their applications

  • Conference paper
  • First Online:
Algebraic Algorithms and Error-Correcting Codes (AAECC 1985)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 229))

  • 160 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. B. Buchberger, A criterion for detecting unnecessary reductions in the constru c tion of Gröbner bases, Eurosam 79, Lect. Not. in Comp. Science 72 (1979), 3–21.

    Google Scholar 

  2. G. Carrà Ferro, Some properties of the lattice points and their applications to differential algebra. Submitted for the publication to Proceedings of A.M.S.

    Google Scholar 

  3. A. Galligo, A propos du Théorème de préparation de Weierstrass, Thèse de 3ème cycle, Lect. Notes in Math. 409 (1973), 543–579.

    Google Scholar 

  4. A. Galligo, Algorithmes de calcul de base standard, Preprint, Université de Nice, Math. n. 9 (1983).

    Google Scholar 

  5. M. Giusti, Some effectivity problems in polynomial ideal theory, Eurosam 1984, Lect. Notes in Comp. Science 174, 159–171.

    Google Scholar 

  6. E.R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York (1973).

    Google Scholar 

  7. D. Lazard, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, Eurosam 83, Lect. Notes in Comp. Science 162 (1983), 146–156.

    Google Scholar 

  8. M. Möller — F. Mora, New constructive methods in classical ideal theory, to appear in J. of Algebra.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Calmet

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferro, G.C. (1986). Some upper bounds for the multiplicity of an autoreduced subset of Nm and their applications. In: Calmet, J. (eds) Algebraic Algorithms and Error-Correcting Codes. AAECC 1985. Lecture Notes in Computer Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16776-5_734

Download citation

  • DOI: https://doi.org/10.1007/3-540-16776-5_734

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16776-1

  • Online ISBN: 978-3-540-39855-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics