Preview
Unable to display preview. Download preview PDF.
Reference
B. Buchberger, A criterion for detecting unnecessary reductions in the constru c tion of Gröbner bases, Eurosam 79, Lect. Not. in Comp. Science 72 (1979), 3–21.
G. Carrà Ferro, Some properties of the lattice points and their applications to differential algebra. Submitted for the publication to Proceedings of A.M.S.
A. Galligo, A propos du Théorème de préparation de Weierstrass, Thèse de 3ème cycle, Lect. Notes in Math. 409 (1973), 543–579.
A. Galligo, Algorithmes de calcul de base standard, Preprint, Université de Nice, Math. n. 9 (1983).
M. Giusti, Some effectivity problems in polynomial ideal theory, Eurosam 1984, Lect. Notes in Comp. Science 174, 159–171.
E.R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York (1973).
D. Lazard, Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, Eurosam 83, Lect. Notes in Comp. Science 162 (1983), 146–156.
M. Möller — F. Mora, New constructive methods in classical ideal theory, to appear in J. of Algebra.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ferro, G.C. (1986). Some upper bounds for the multiplicity of an autoreduced subset of Nm and their applications. In: Calmet, J. (eds) Algebraic Algorithms and Error-Correcting Codes. AAECC 1985. Lecture Notes in Computer Science, vol 229. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16776-5_734
Download citation
DOI: https://doi.org/10.1007/3-540-16776-5_734
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-16776-1
Online ISBN: 978-3-540-39855-4
eBook Packages: Springer Book Archive