Preview
Unable to display preview. Download preview PDF.
References
Adámek, J., Free algebras and automata realizations in the language of categories.Comment.Math.Univ.Carolinae 15(1974),589–602.
Adámek,J., Realization theory for automata in categories.To appear in J.of Pure and Applied Algebra.
Adámek, J., Automata and categories: Finiteness contra minimality. Math.Found.of Comp.Sci.1975,Lect.Notes in C.S.32(1975),160–166.
Adámek, J., Cogeneration of algebras in regular categories.To appear in Bull.Austral.Math.Soc.
Adámek, J. and Koubek, V., Remarks on fixed points of functors.These Proceedings.
Adámek, J. and Trnková, V., Recognizable and regular languages in a category.These Proceedings.
Arbib, M.A. and Manes, E.G., A categorist's view of automata and systems.Category Theory applied to Comput.and Control,Proc.of the First Internat.Sympos.1974,62–76.
Arbib, M.A. and Manes, E.G., Machines in a Category:An expository introduction.SIAM Review 16(1974),163–192.
Arbib, M.A. and Manes E.G., Fuzzy machines in a category.Bull.Austral.Math.Soc.13(1975),169–210.
Barr, M., Relational algebras.Lect.Notes in Math.137(1970),39–55.
Ehrig, H., Universal theory of automata.Teubner Studienbüch.1974.
Goguen, I.A., Minimal realization of machines in closed categories.Bull.Amer.Math.Soc.78(1972),777–784.
Goguen, I.A., Realization is Universal.Math.Syst.Theory 6(1973),359–374.
Grillet, P.A., Regular categories.Lect.Notes in Math.236(1971),121–221.
Koubek, V. and Reiterman, J., Automata and Categories-Input processes.Math.Found.of Comp.Sci.1975, Lect.Notes in C.S.32(1975),280–286.
Kůrková-Pohlová, V. and Koubek, V., When a generalized algebraic category is monadic.Comment.Math.Univ.Carolinae 15(1974),577–602.
MacLane, S., Categories for the working mathematician.Springer, New York-Heidelberg-Berlin,1971.
Manes, E.G., Algebraic Theories.Springer-Verlag, New York-Heidelberg-Berlin,1976.
Reitermann, J., Universal algebra, these Proceedings.
Thatcher, J.W. and Wright, J.B., Generalized Finite Automata Theory with an Application to a Decision Problem of Second Order Logic.Math.Syst.Theory 2(1968),57–81.
Trnková, V., On descriptive classification of set functors I.and II.Comment.Math.Univ.Carolinae 12(1971),143–174 and 345–357.
Trnková, V., On minimal realizations of behavior maps in categorial automata theory.Comment.Math.Univ.Carolinae 15(1974),555–566.
Trnková, V., Minimal realizations for finite sets in categorial automata theory.Comment.Math.Univ.Carolinae 16(1975),21–35.
Trnková, V., Automata and categories.Math.Found.of Comp.Sci.1975, Lect.Notes in C.S.32(1975),138–152.
Trnková, V. and Adámek, J., Minimal realization is not universal.To appear.
Trnková, V. and Adámek, J., On Languages accepted by machines in the category of sets.Math.Found.of Comp.Sci.1977,Lect.Notes in C.S.
Trnková, V., Adámek J., Koubek, V. and Reiterman J., Free algebras, input processes and free monads.Comment.Math.Univ.Carolinae 16(1975),339–351.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1977 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trnková, V. (1977). Relational automata in a category and their languages. In: Karpiński, M. (eds) Fundamentals of Computation Theory. FCT 1977. Lecture Notes in Computer Science, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08442-8_101
Download citation
DOI: https://doi.org/10.1007/3-540-08442-8_101
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-08442-6
Online ISBN: 978-3-540-37084-0
eBook Packages: Springer Book Archive