Relational automata in a category and their languages | SpringerLink
Skip to main content

Relational automata in a category and their languages

  • Section B Computation Theory in Category
  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 1977)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 56))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adámek, J., Free algebras and automata realizations in the language of categories.Comment.Math.Univ.Carolinae 15(1974),589–602.

    Google Scholar 

  2. Adámek,J., Realization theory for automata in categories.To appear in J.of Pure and Applied Algebra.

    Google Scholar 

  3. Adámek, J., Automata and categories: Finiteness contra minimality. Math.Found.of Comp.Sci.1975,Lect.Notes in C.S.32(1975),160–166.

    Google Scholar 

  4. Adámek, J., Cogeneration of algebras in regular categories.To appear in Bull.Austral.Math.Soc.

    Google Scholar 

  5. Adámek, J. and Koubek, V., Remarks on fixed points of functors.These Proceedings.

    Google Scholar 

  6. Adámek, J. and Trnková, V., Recognizable and regular languages in a category.These Proceedings.

    Google Scholar 

  7. Arbib, M.A. and Manes, E.G., A categorist's view of automata and systems.Category Theory applied to Comput.and Control,Proc.of the First Internat.Sympos.1974,62–76.

    Google Scholar 

  8. Arbib, M.A. and Manes, E.G., Machines in a Category:An expository introduction.SIAM Review 16(1974),163–192.

    Google Scholar 

  9. Arbib, M.A. and Manes E.G., Fuzzy machines in a category.Bull.Austral.Math.Soc.13(1975),169–210.

    Google Scholar 

  10. Barr, M., Relational algebras.Lect.Notes in Math.137(1970),39–55.

    Google Scholar 

  11. Ehrig, H., Universal theory of automata.Teubner Studienbüch.1974.

    Google Scholar 

  12. Goguen, I.A., Minimal realization of machines in closed categories.Bull.Amer.Math.Soc.78(1972),777–784.

    Google Scholar 

  13. Goguen, I.A., Realization is Universal.Math.Syst.Theory 6(1973),359–374.

    Google Scholar 

  14. Grillet, P.A., Regular categories.Lect.Notes in Math.236(1971),121–221.

    Google Scholar 

  15. Koubek, V. and Reiterman, J., Automata and Categories-Input processes.Math.Found.of Comp.Sci.1975, Lect.Notes in C.S.32(1975),280–286.

    Google Scholar 

  16. Kůrková-Pohlová, V. and Koubek, V., When a generalized algebraic category is monadic.Comment.Math.Univ.Carolinae 15(1974),577–602.

    Google Scholar 

  17. MacLane, S., Categories for the working mathematician.Springer, New York-Heidelberg-Berlin,1971.

    Google Scholar 

  18. Manes, E.G., Algebraic Theories.Springer-Verlag, New York-Heidelberg-Berlin,1976.

    Google Scholar 

  19. Reitermann, J., Universal algebra, these Proceedings.

    Google Scholar 

  20. Thatcher, J.W. and Wright, J.B., Generalized Finite Automata Theory with an Application to a Decision Problem of Second Order Logic.Math.Syst.Theory 2(1968),57–81.

    Google Scholar 

  21. Trnková, V., On descriptive classification of set functors I.and II.Comment.Math.Univ.Carolinae 12(1971),143–174 and 345–357.

    Google Scholar 

  22. Trnková, V., On minimal realizations of behavior maps in categorial automata theory.Comment.Math.Univ.Carolinae 15(1974),555–566.

    Google Scholar 

  23. Trnková, V., Minimal realizations for finite sets in categorial automata theory.Comment.Math.Univ.Carolinae 16(1975),21–35.

    Google Scholar 

  24. Trnková, V., Automata and categories.Math.Found.of Comp.Sci.1975, Lect.Notes in C.S.32(1975),138–152.

    Google Scholar 

  25. Trnková, V. and Adámek, J., Minimal realization is not universal.To appear.

    Google Scholar 

  26. Trnková, V. and Adámek, J., On Languages accepted by machines in the category of sets.Math.Found.of Comp.Sci.1977,Lect.Notes in C.S.

    Google Scholar 

  27. Trnková, V., Adámek J., Koubek, V. and Reiterman J., Free algebras, input processes and free monads.Comment.Math.Univ.Carolinae 16(1975),339–351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marek Karpiński

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trnková, V. (1977). Relational automata in a category and their languages. In: Karpiński, M. (eds) Fundamentals of Computation Theory. FCT 1977. Lecture Notes in Computer Science, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08442-8_101

Download citation

  • DOI: https://doi.org/10.1007/3-540-08442-8_101

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08442-6

  • Online ISBN: 978-3-540-37084-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics