A New Passage Ranking Algorithm for Video Question Answering | SpringerLink
Skip to main content

A New Passage Ranking Algorithm for Video Question Answering

  • Conference paper
Advances in Image and Video Technology (PSIVT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4319))

Included in the following conference series:

Abstract

Developing a question answering (Q/A) system involves in integrating abundant linguistic resources such as syntactic parsers, named entity recognizers which are not only impose time cost but also unavailable in other languages. Ranking-based approaches take the advantage of both efficiency and multilingual portability but most of them bias to high frequent words. In this paper, we propose a new passage ranking algorithm for extending textQ/A toward videoQ/A based on searching lexical information in videos. This method takes both N-gram match and word density into account and finds the optimal match sequence using dynamic programming techniques. Besides, it is very efficient to handle real time tasks for online video question answering. We evaluated our method with 150 actual user’s questions on the 45GB video collections. Nevertheless, four well-known but multilingual portable ranking approaches were adopted to compare. Experimental results show that our method outperforms the second best approach with relatively 25.64% MRR score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cai, M., Song, J., Lyu, M.R.: A new approach for video text detection. In: Proceedings of International Conference on Image Processing, pp. 117–120 (2002)

    Google Scholar 

  2. Cao, J., Nunamaker, J.F.: Question answering on lecture videos: a multifaceted approach. In: International Conference on Digital Libraries, pp. 214–215 (2004)

    Google Scholar 

  3. Chang, F., Chen, G.C., Lin, C.C., Lin, W.H.: Caption analysis and recognition for building video indexing systems. ACM Multimedia systems 10(4), 344–355 (2005)

    Article  Google Scholar 

  4. Cui, H., Sun, R., Li, K., Kan, M., Chua, T.: Question answering passage retrieval using dependency relations. In: Proceedings of the 28th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 400–407 (2005)

    Google Scholar 

  5. Fan, J., Yau, D.K.Y., Elmagarmid, A.K., Aref, W.G.: Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans. On Image Processing 10(10), 1454–1464 (2001)

    Article  MATH  Google Scholar 

  6. Hong, T., Lam, S.W., Hull, J.J., Srihari, S.N.: The design of a nearest-neighbor classifier and its use for japanese character recognition. In: Proceedings of Third International Conference on Document Analysis and Recognition, pp. 270–291 (1995)

    Google Scholar 

  7. Lee, G.G., Seo, J.Y., Lee, S.W., Jung, H.M., Cho, B.H., Lee, C.K., Kwak, B.K., Cha, J.W., Kim, D.S., An, J.H., Kim, H.S.: SiteQ: Engineering high performance QA system using lexico-semantic pattern matching and shallow NLP. In: Proceedings of the 10th Text Retrieval Conference, pp. 437–446 (2001)

    Google Scholar 

  8. Lienhart, R., Wernicke, A.: Localizing and segmenting text in images and videos. IEEE Trans. Circuits and Systems for Video Technology 12(4), 243–255 (2002)

    Article  Google Scholar 

  9. Lin, C.J., Liu, C.C., Chen, H.H.: A simple method for Chinese video OCR and its application to question answering. Computational linguistics and Chinese language processing 6(2), 11–30 (2001)

    MathSciNet  Google Scholar 

  10. Lin, J., Quan, D., Sinha, V., Bakshi, K., Huynh, D., Katz, B., Karger, D.R.: What makes a good answer? the role of context in question answering. In: Proceedings of the 9th international conference on human-computer interaction (INTERACT), pp. 25–32 (2003)

    Google Scholar 

  11. Lyu, M.R., Song, J., Cai, M.: A comprehensive method for multilingual video text detection, localization, and extraction. IEEE Trans. Circuits and Systems for Video Technology 15(2), 243–255 (2005)

    Article  Google Scholar 

  12. Pasca, M., Harabagiu, S.: High-performance question answering. In: Proceedings of the 24th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 366–374 (2001)

    Google Scholar 

  13. Robertson, E., Walker, S., Beaulieu, M.: Okapi at TREC-7: automatic ad hoc, filter-ing, VLC and interactive track. In: Proceedings of the 7th Text Retrieval Conference (1998)

    Google Scholar 

  14. Rus, V., Moldovan, D.: High precision logic form transformation. International Journal on Artificial Intelligence Tools 11(3), 437–454 (2002)

    Article  Google Scholar 

  15. Savoy, J.: Comparative study on monolingual and multilingual search models for use with Asian languages. ACM transactions on Asian language information processing (TALIP) 4(2), 163–189 (2005)

    Article  Google Scholar 

  16. Tellex, S., Katz, B., Lin, J.J., Fernandes, A., Marton, G.: Quantitative evaluation of passage retrieval algorithms for question answering. In: Proceedings of the 26th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 41–47 (2003)

    Google Scholar 

  17. Voorhees, E.M.: Overview of the TREC 2001 question answering track. In: Proceedings of the 10th Text Retrieval Conference, pp. 42–52 (2001)

    Google Scholar 

  18. Wu, Y.C., Lee, Y.S., Chang, C.H.: CLVQ: Cross-language video question/answering system. In: Proceedings of 6th IEEE International Symposium on Multimedia Software Engineering, pp. 294–301 (2004)

    Google Scholar 

  19. Yang, H., Chaison, L., Zhao, Y., Neo, S.Y., Chua, T.S.: VideoQA: Question answering on news video. In: Proceedings of the 11th ACM International Conference on Multimedia, pp. 632–641 (2003a)

    Google Scholar 

  20. Yang, H., Chua, T.S., Wang, S.G., Koh, C.K.: Structural use of external knowledge for event-based open domain question answering. In: Proceedings of the 26th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 33–40 (2003b)

    Google Scholar 

  21. Zhang, D., Nunamaker, J.: A natural language approach to content-based video indexing and retrieval for interactive E-learning. IEEE Transactions on Multimedia 6(3), 450–458 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, YC., Lee, YS., Yang, JC., Yen, SJ. (2006). A New Passage Ranking Algorithm for Video Question Answering. In: Chang, LW., Lie, WN. (eds) Advances in Image and Video Technology. PSIVT 2006. Lecture Notes in Computer Science, vol 4319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949534_56

Download citation

  • DOI: https://doi.org/10.1007/11949534_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68297-4

  • Online ISBN: 978-3-540-68298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics