The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients | SpringerLink
Skip to main content

The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4345))

Included in the following conference series:

  • 966 Accesses

Abstract

We attempted to find a way to distinguish survivors and non-survivors on the basis of the differences in the dynamics in both patient classes using multivariate autoregressive (MAR) time series analysis techniques. Time series data of 11 physiological variables were used to calculate MAR models. Data were taken from a subset of patients, with an intensive care unit length of stay of at least 20 days, from a database of a previously published randomized controlled trial [1]. The methodology was developed on 20 and validated on 16 patients. Based on the MAR coefficients, impulse response curves were simulated to describe the contributions of a single variable to fluctuations in another. The impulse responses of non-survivors had a tendency to be either more instable or to return to the initial level after a longer time than the responses of survivors did. This allowed us to distinguish survivors from non-survivors in the development cohort with a sensitivity of 0.70 and a selectivity of 1.00. This result was confirmed in the validation set where a sensitivity of 0.63 and a selectivity of 1.00 were reached.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Van Den Berghe, G., Wouters, P., Weekers, F., Verwaest, C., Bruyninckx, F., Schetz, M., Vlasselaers, D., Ferdinande, P., Lauwers, P., Bouillon, R.: Intensive Insulin Therapy in Critically Ill Patients. New Engl. J. Med. 345, 1359–1367 (2001)

    Article  Google Scholar 

  2. Knaus, W.A., Draper, E.A., Wagner, D.P., Zimmerman, J.E.: Apache II: a severity of disease classification system. Crit. Care Med. 13, 818–829 (1985)

    Article  Google Scholar 

  3. Knaus, W.A., Wagner, D.P., Draper, E.A., Zimmerman, J.E., Bergner, M., Bastos, P.G., Sirio, C.A., Murphy, D.J., Lotring, T., Damiano, A., Harrell, F.E.: The APACHE III Prog-nostic system. Chest, 1619–1636 (1991)

    Google Scholar 

  4. Wyatt, J.: Nervous About Artificial Neural Networks. Lancet 346, 1175–1177 (1995)

    Article  Google Scholar 

  5. Dybowski, R., Weller, P., Chang, R., Gant, V.: Prediction of Outcome in Critically Ill Patients Using Artificial Neural Network Synthesised by Genetic Algorithm. Lancet 347, 1146–1150 (1996)

    Article  Google Scholar 

  6. Frize, M., Ennett, C.M., Stevenson, M., Trigg, H.C.E.: Clinical Decision Support Systems for Intensive Care Units: Using Artificial Neural Networks. Med. Eng. Phys. 23, 217–225 (2001)

    Article  Google Scholar 

  7. Ennett, C.M., Frize, M., Charette, E.: Improvement and Automation of Artificial Neural Networks to Estimate Medical Outcomes. Med. Eng. Phys. 26, 321–328 (2004)

    Article  Google Scholar 

  8. Sierra, B., Serrano, N., Larranaga, P., Plasencia, E.J., Inza, I., Jimenez, J.J., Revuelta, P., Mora, M.L.: Using Bayesian Networks in the Construction of a Bi-Level Multi-Classifier. A Case Study Using Intensive Care Unit Patients Data. Artif. Intell. Med. 22, 233–248 (2001)

    Google Scholar 

  9. Frize, M., Walker, R.: Clinical Decision-Support Systems for Intensive Care Units Using Case-Based Reasoning. Med. Eng. Phys. 22, 671–677 (2000)

    Article  Google Scholar 

  10. Hanson, C.W., Marshall, B.E.: Artificial Intelligence Applications in the Intensive Care Unit. Crit. Care Med. 29, 427–435 (2001)

    Article  Google Scholar 

  11. Lambert, C.R., Raymenants, E., Pepine, C.J.: Time-Series Analysis of Long-Term Ambu-latory Myocardial-Ischemia - Effects of Beta-Adrenergic and Calcium-Channel Blockade. Am. Heart J. 129, 677–684 (1995)

    Article  Google Scholar 

  12. Imhoff, M., Bauer, M., Gather, U., Lohlein, D.: Statistical Pattern Detection in Univariate Time Series of Intensive Care on-Line Monitoring Data. Intens. Care Med. 24, 1305–1314 (1998)

    Article  Google Scholar 

  13. Akaike, H.: On the use of a linear model for the identification of feedback systems. Ann. I. Stat. Math. 20, 425–439 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jones, R.W. (ed.): Principles of biological regulation: an introduction to feedback systems. Academic Press Inc, New York (1973)

    Google Scholar 

  15. Box, G.E., Jenkins, G.M., Reinsel, G.C. (eds.): Time series analysis: forecasting and control. Prentice-Hall International, New Jersey (1994)

    MATH  Google Scholar 

  16. Wada, T., Akaike, H., Yamada, Y., Udagawa, E.: Application of Multivariate Autoregressive Modeling for Analysis of Immunological Networks in Man. Comput. Math. Appl. 15, 713–722 (1988)

    Article  MATH  Google Scholar 

  17. Wada, T., Yamada, H., Inoue, H., Iso, T., Udagawa, E., Kuroda, S.: Clinical Usefulness of Multivariate Autoregressive (Ar) Modeling as a Tool for Analyzing Lymphocyte-T Subset Fluctuations. Math. Comput. Model 14, 610–613 (1990)

    Article  MATH  Google Scholar 

  18. Wada, T., Sato, S., Matsuo, N.: Application of Multivariate Autoregressive Modeling for Analyzing Chloride Potassium Bicarbonate Relationship in the Body. Med. Biol. Eng. Comput. 31, S99–S107 (1993)

    Article  Google Scholar 

  19. Miwakeichi, F., Galka, A., Uchida, S., Arakaki, H., Hirai, N., Nishida, M., Maehara, T., Kawai, K., Sunaga, S., Shimizu, H.: Impulse Response Function Based on Multivariate Ar Model Can Differentiate Focal Hemisphere in Temporal Lobe Epilepsy. Epilepsy Res. 61, 73–78 (2004)

    Article  Google Scholar 

  20. Tschacher, W., Scheier, C., Hashimoto, Y.: Dynamical Analysis of Schizophrenia Courses. Biol. Psychiat. 41, 428–437 (1997)

    Article  Google Scholar 

  21. Clermont, G., Neugebauer, E.A.M.: Systems Biology and Translational Research. J. Crit. Care 20, 381–382 (2005)

    Article  Google Scholar 

  22. Kitano, H.: Computational Systems Biology. Nature 420, 206–210 (2002)

    Article  Google Scholar 

  23. Seely, A.J.E., Macklem, P.T.: Complex Systems and the Technology of Variability Analysis. Crit. Care 8, R367–R384 (2004)

    Article  Google Scholar 

  24. Buchman, T.G.: Nonlinear dynamics, complex systems, and the pathobiology of critical illness. Curr. Opin. Crit. Care 10, 378–382 (2004)

    Article  Google Scholar 

  25. Glass, L.: Synchronization and Rhythmic Processes in Physiology. Nature 410, 277–284 (2001)

    Article  Google Scholar 

  26. Lipsitz, L.A.: Dynamics of Stability: the Physiologic Basis of Functional Health and Frailty. J Gerontol. A-Biol. 57, 115–125 (2002)

    Google Scholar 

  27. Poon, C.S., Merrill, C.K.: Decrease of Cardiac Chaos in Congestive Heart Failure. Nature 389, 492–495 (1997)

    Article  Google Scholar 

  28. Ivanov, P.C., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z.R., Stanley, H.E.: Multifractality in Human Heartbeat Dynamics. Nature 399, 461–465 (1999)

    Article  Google Scholar 

  29. Bruhn, J., Ropcke, H., Hoeft, A.: Approximate Entropy as an Electroencephalographic Measure of Anesthetic Drug Effect During Desflurane Anesthesia. Anesthesiology 92, 715–726 (2000)

    Article  Google Scholar 

  30. Pincus, S.M.: Approximate Entropy as a Measure of System-Complexity. P. Natl. Acad. Sci. USA 88, 2297–2301 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Loon, K., Aerts, JM., Meyfroidt, G., Van den Berghe, G., Berckmans, D. (2006). The Use of Multivariate Autoregressive Modelling for Analyzing Dynamical Physiological Responses of Individual Critically Ill Patients. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds) Biological and Medical Data Analysis. ISBMDA 2006. Lecture Notes in Computer Science(), vol 4345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11946465_26

Download citation

  • DOI: https://doi.org/10.1007/11946465_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68063-5

  • Online ISBN: 978-3-540-68065-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics