Monte-Carlo Localization for Mobile Wireless Sensor Networks | SpringerLink
Skip to main content

Monte-Carlo Localization for Mobile Wireless Sensor Networks

  • Conference paper
Mobile Ad-hoc and Sensor Networks (MSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4325))

Included in the following conference series:

Abstract

Localization is crucial to many applications in wireless sensor networks. This article presents a range-free anchor-based localization algorithm for mobile wireless sensor networks that builds upon the Monte Carlo Localization algorithm. We improve the localization accuracy and efficiency by making better use of the information a sensor node gathers and by drawing the necessary location samples faster. Namely, we constrain the area from which samples are drawn by building a box that covers the region where anchors’ radio ranges overlap. Simulation results show that localization accuracy is improved by a minimum of 4% and by a maximum of 73%, on average 30%, for varying node speeds when considering nodes with knowledge of at least three anchors. The coverage is also strongly affected by speed and its improvement ranges from 3% to 55%, on average 22%. Finally, the processing time is reduced by 93% for a similar localization accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baggio, A.: Monte-Carlo localization for mobile wireless sensor networks. Technical Report PDS-2006-004, Delft University of Technology (June 2006)

    Google Scholar 

  2. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA 1999), Detroit, Michigan, USA (May 1999)

    Google Scholar 

  3. Dil, B., Dulman, S., Havinga, P.: Range-based localization in mobile sensor networks. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, pp. 164–179. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  5. Dutta, P., Bergbreiter, S.: Mobiloc: Mobility enhanced localization (December 2003)

    Google Scholar 

  6. Fall, K.: A delay-tolerant network architecture for challenged Internets. In: ACM SIGCOMM, Karlsruhe, Germany, pp. 27–34 (August 2003)

    Google Scholar 

  7. Galstyan, A., Krishnamachari, B., Lerman, K., Pattem, S.: Distributed online localization in sensor networks using a moving target. In: Third international symposium on Information processing in sensor networks (IPSN), Berkeley, California, USA, pp. 61–70 (April 2004)

    Google Scholar 

  8. Handschin, J.E.: Monte Carlo techniques for prediction and filtering of non-linear stochastic processes. Automatica 4(6), 555–563 (1970)

    Article  MathSciNet  Google Scholar 

  9. Hu, L., Evans, D.: Localization for mobile sensor networks. In: Tenth International Conference on Mobile Computing and Networking (MobiCom 2004), Philadelphia, Pennsylvania, USA, pp. 45–57 (September 2004)

    Google Scholar 

  10. Bulusu, D.E.N., Heidenmann, J.: GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine 7(5), 28–34 (2000)

    Article  Google Scholar 

  11. Pathirana, P.N., Bulusu, N., Savkin, A.V., Jha, S.K.: Node localization using mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile Computing 4(3), 285–296 (2005)

    Article  Google Scholar 

  12. Peng, R., Sichitiu, M.L.: Localization of wireless sensor networks with a mobile beacon. In: First IEEE Conference on Mobile Ad-hoc and Sensor Systems (MASS 2004), Fort Lauderdale, FL, USA (October 2004)

    Google Scholar 

  13. Priyantha, N.B., Balakrishnan, H., Demaine, E.D., Teller, S.: Mobile-assisted localization in wireless sensor networks. In: INFOCOM 2005, Miami, FL, USA (March 2005)

    Google Scholar 

  14. Ssu, K.-F., Ou, C.-H., Jiau, H.C.: Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 1187–1197 (May 2005)

    Google Scholar 

  15. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128(1-2), 99–141 (2001)

    Article  MATH  Google Scholar 

  16. Yoon, J., Liu, M., Noble, B.: Random waypoint considered harmful. In: IEEE INFOCOM, San Franciso, CA, USA (March–April 2003)

    Google Scholar 

  17. Yoon, J., Liu, M., Noble, B.: Sound mobility models. In: ACM MobiCom, San Diego, CA, USA, pp. 205–216 (September 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baggio, A., Langendoen, K. (2006). Monte-Carlo Localization for Mobile Wireless Sensor Networks. In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds) Mobile Ad-hoc and Sensor Networks. MSN 2006. Lecture Notes in Computer Science, vol 4325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11943952_27

Download citation

  • DOI: https://doi.org/10.1007/11943952_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49932-9

  • Online ISBN: 978-3-540-49933-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics