An Efficient Alternative to SVM Based Recursive Feature Elimination with Applications in Natural Language Processing and Bioinformatics | SpringerLink
Skip to main content

An Efficient Alternative to SVM Based Recursive Feature Elimination with Applications in Natural Language Processing and Bioinformatics

  • Conference paper
AI 2006: Advances in Artificial Intelligence (AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4304))

Included in the following conference series:

  • 3895 Accesses

Abstract

The SVM based Recursive Feature Elimination (RFE-SVM) algorithm is a popular technique for feature selection, used in natural language processing and bioinformatics. Recently it was demonstrated that a small regularisation constant C can considerably improve the performance of RFE-SVM on microarray datasets. In this paper we show that further improvements are possible if the explicitly computable limit C →0 is used. We prove that in this limit most forms of SVM and ridge regression classifiers scaled by the factor \(\frac{1}{C}\) converge to a centroid classifier. As this classifier can be used directly for feature ranking, in the limit we can avoid the computationally demanding recursion and convex optimisation in RFE-SVM. Comparisons on two text based author verification tasks and on three genomic microarray classification tasks indicate that this straightforward method can surprisingly obtain comparable (at times superior) performance and is about an order of magnitude faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  2. Koppel, M., Schler, J.: Authorship verification as a one-class classification problem. In: Proc. 21st Int. Conf. Machine Learning (ICML), Banff, Canada (2004)

    Google Scholar 

  3. Huang, T.M., Kecman, V.: Gene extraction for cancer diagnosis by support vector machines - an improvement. Artificial Intelligence in Medicine 35, 185–194 (2005)

    Article  Google Scholar 

  4. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  6. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  7. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  8. Gamon, M.: Linguistic correlates of style: authorship classification with deep linguistic analysis features. In: Proc. 20th Int. Conf. Computational Linguistics (COLING), Geneva, pp. 611–617 (2004)

    Google Scholar 

  9. Love, H.: Attributing Authorship: An Introduction. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  10. Sanderson, C., Guenter, S.: Short text authorship attribution via sequence kernels, Markov chains and author unmasking: An investigation. In: Proc. 2006 Conf. Empirical Methods in Natural Language Processing (EMNLP), Sydney, pp. 482–491 (2006)

    Google Scholar 

  11. Ambroise, C., McLachlan, G.: Selection bias in gene extraction on the basis of microarray gene-expression data. Proc. National Acad. Sci. 99, 6562–6566 (2002)

    Article  MATH  Google Scholar 

  12. Alizadeh, A., Eisen, M., Davis, R., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  13. Chu, F., Wang, L.: Gene expression data analysis using support vector machines. In: Proc. Intl. Joint Conf. Neural Networks, pp. 2268–2271 (2003)

    Google Scholar 

  14. Tothill, R., Kowalczyk, A., Rischin, D., Bousioutas, A., Haviv, I., et al.: An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Research 65, 4031–4040 (2005)

    Article  Google Scholar 

  15. Tibshirani, R., Hastie, T., et al.: Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statistical Science 18, 104–117 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. Journal of Machine Learning Research 5, 101–141 (2004)

    MathSciNet  Google Scholar 

  17. van’t Veer, L., Dai, H., van de Vijver, M., He, Y., Hart, A., et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bedo, J., Sanderson, C., Kowalczyk, A. (2006). An Efficient Alternative to SVM Based Recursive Feature Elimination with Applications in Natural Language Processing and Bioinformatics. In: Sattar, A., Kang, Bh. (eds) AI 2006: Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science(), vol 4304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941439_21

Download citation

  • DOI: https://doi.org/10.1007/11941439_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49787-5

  • Online ISBN: 978-3-540-49788-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics