Visualization of Segmented Color Volume Data Using GPU | SpringerLink
Skip to main content

Visualization of Segmented Color Volume Data Using GPU

  • Conference paper
Advances in Artificial Reality and Tele-Existence (ICAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4282))

Included in the following conference series:

  • 2258 Accesses

Abstract

Recently, several color volume data such as Visible Human became available for generating a realistic image. These dataset are commonly operated on CPU, however, the rendering time is time-consuming task on CPU. GPU-based volume rendering method can visualize color volume data more easily and quickly because it provides 3D texture including RGB channel. In this paper, we present the GPU-based visualization method of segmented color volume data. During the rendering stage, we need two volume datasets, color and segmented volume. However, the segmented volume requires additional memory. In our method, we use only one 3D texture in GPU. We encode three kinds of values in the 3D texture, color, segmented index and tagged values. Segmented index means the index value of internal organ. And the tagged values are the information of region of interest. We can visualize fast the color image of real human body without additional memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Spitzer, V.M., Ackerman, M.J., Scherizinger, A.L., Whitlock, D.G.: The Visible Human Male: a Technical report. J. Am. Med. Inform. Assoc. 3, 118–130 (1996)

    Article  Google Scholar 

  2. Ackerman, M.J.: The Visible Human Project. A resource for education. Acad. Med. 74, 667–670 (1999)

    Article  Google Scholar 

  3. Park, J.S., Chung, M.S., Hwang, S.B., Lee, Y.S., Har, D., Park, H.S.: Visible Korean Human: Improved Serially Sectioned Images of the Entire Body. IEEE Transactions on Medical Imaging 24(3), 352–360 (2005)

    Article  Google Scholar 

  4. Zhang, S.X., Heng, P.A., Liu, Z.J., Tan, L.W., Qiu, M.G., Li, Q.Y., Liao, R.X., Li, K., Cui, G.Y., Guo, Y.L., Yang, X.P., Liu, G.J., Shan, J.L., Liu, J.J., Zhang, W.G., Chen, X.H., Chen, J.H., Wang, J., Chen, W., Lu, M., You, J., Pang, X.L., Xiao, H., Xie, Y.M.: Creation of the Chinese Visible Human data set. Anat. Rec. 275B, 190–195 (2003)

    Article  Google Scholar 

  5. Pfister, H., Lorensen, B., Bajaj, C., Kindlmann, G., Shroeder, W., Avila, L., Martin, K., Machiraju, R., Lee, J.: The transfer function bake-off. IEEE Computer Graphics and Applications 21(3), 16–22 (2001)

    Article  Google Scholar 

  6. Ebert, D., Morris, C., Rheingans, P., Yoo, T.: Designing effective transfer functions for volume rendering from photographics volumes. IEEE Trans. on Visualization and Computer Graphics 8(2), 183–197 (2002)

    Article  Google Scholar 

  7. Krueger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: Proceedings of IEEE Visualization 2003, pp. 38–46 (2003)

    Google Scholar 

  8. Hong, W., Qiu, F., Kaufman, A.: GPU-based Object-Order Ray-Casting for Large Datasets. In: Fourth International Workshop on Volume Graphics, pp. 177–240 (2005)

    Google Scholar 

  9. Scharsach, H.: Advanced GPU Raycasting. In: Proceedings of CESCG, pp. 69–76 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kwon, KJ., Shin, BS. (2006). Visualization of Segmented Color Volume Data Using GPU. In: Pan, Z., Cheok, A., Haller, M., Lau, R.W.H., Saito, H., Liang, R. (eds) Advances in Artificial Reality and Tele-Existence. ICAT 2006. Lecture Notes in Computer Science, vol 4282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941354_110

Download citation

  • DOI: https://doi.org/10.1007/11941354_110

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49776-9

  • Online ISBN: 978-3-540-49779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics