Improved Algorithms for the Minmax-Regret 1-Center Problem | SpringerLink
Skip to main content

Improved Algorithms for the Minmax-Regret 1-Center Problem

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

This paper studies the problem of finding the 1-center on a graph where vertex weights are uncertain and the uncertainty is characterized by given intervals. It is required to find a minmax-regret solution, which minimizes the worst-case loss in the objective function. Averbakh and Berman had an O(mn 2log n)-time algorithm for the problem on a general graph. On a tree, the time complexity of their algorithm becomes O(n 2). In this paper, we improve these two bounds to O(mnlog n) and O(nlog2 n), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alstrup, S., Lauridsen, P.W., Sommerlund, P., Thorup, M.: Finding cores of limited length. Technical Report. The IT University of Copenhagen (2001)

    Google Scholar 

  2. Averbakh, I.: On the complexity of a class of robust location problems. Working Paper. Western Washington University. Bellingham, WA (1997)

    Google Scholar 

  3. Averbakh, I., Berman, O.: Minimax regret p-center location on a network with demand uncertainty. Location Science 5, 247–254 (1997)

    Article  MATH  Google Scholar 

  4. Averbakh, I., Berman, O.: Algorithms for the robust 1-center problem on a tree. European Journal of Operational Research 123, 292–302 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Averbakh, I., Berman, O.: Minmax regret median location on a network under uncertainty. Informs Journal on Computing 12, 104–110 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Averbakh, I., Berman, O.: An improved algorithm for the minmax regret median problem on a tree. Networks 41, 97–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Burkard, R.E., Dollani, H.: A note on the robust 1-center problem on trees. Annals of Operations Research 110, 69–82 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, B.T., Lin, C.S.: Minmax-regret robust 1-median location on a tree. Networks 31, 93–103 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Drezner, Z.: Sensitivity analysis of the optimal location of a facility. Naval Research Logistics Quarterly 33, 209–224 (1980)

    Google Scholar 

  10. Goldman, A.J.: Optimal center location in simple networks. Transportation Science 5, 212–221 (1971)

    Article  MathSciNet  Google Scholar 

  11. Hakimi, S.L.: Optimal locations of switching centers and the absolute centers and medians of a graph. Operations Research 12, 450–459 (1964)

    Article  MATH  Google Scholar 

  12. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. I: The p-centers. SIAM Journal on Applied Mathematics 37, 513–538 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems. II: The p-medians. SIAM Journal on Applied Mathematics 37, 539–560 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kouvelis, P., Vairaktarakis, G., Yu, G.: Robust 1-median location on a tree in the presence of demand and transportation cost uncertainty. Working Paper 93/94-3-4. Department of Management Science and Information Systems, Graduate School of Business, The University of Texas at Austin (1994)

    Google Scholar 

  15. Kouvelis, P., Yu, G.: Robust discrete optimization and its applications. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  16. Ku, S.C., Lu, C.J., Wang, B.F., Lin, T.C.: Efficient algorithms for two generalized 2-median problems on trees. In: Proceedings of the 12th International Symposium on Algorithms and Computation, pp. 768–778 (2001)

    Google Scholar 

  17. Labbe, M., Thisse, J.-F., Wendell, R.: Sensitivity analysis in minisum facility location problems. Operations Research 38, 961–969 (1991)

    Article  MathSciNet  Google Scholar 

  18. Megiddo, N.: Linear-time algorithms for linear-programming in R 3 and related problems. SIAM Journal on Computing 12, 759–776 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mirchandani, P.B., Odoni, A.R.: Location of medians on stochastic networks. Transportation Science 13, 85–97 (1979)

    Article  MathSciNet  Google Scholar 

  20. Mirchandani, P.B., Oudjit, A., Wong, R.T.: Multidimensional extensions and a nested dual approach for the M-median problem. European Journal of Operational Research 21, 121–137 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Oudjit, A.: Median locations on deterministic and probabilistic multidimensional networks. PhD Dissertation. Rennselaer Polytechnic Institute, Troy (1981)

    Google Scholar 

  22. Weaver, J.R., Church, R.L.: Computational procedures of location problems on stochastic networks. Transportation Science 17, 168–180 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, TC., Yu, HI., Wang, BF. (2006). Improved Algorithms for the Minmax-Regret 1-Center Problem. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_54

Download citation

  • DOI: https://doi.org/10.1007/11940128_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics