On Isomorphism and Canonization of Tournaments and Hypertournaments | SpringerLink
Skip to main content

On Isomorphism and Canonization of Tournaments and Hypertournaments

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

We give a polynomial-time oracle algorithm for Tournament Canonization that accesses oracles for Tournament Isomorphism and Rigid-Tournament Canonization. Extending the Babai-Luks Tournament Canonization algorithm, we give an n O(k + logn) algorithm for canonization and isomorphism testing of k-hypertournaments, where n is the number of vertices and k is the size of hyperedges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babai, L., Cameron, P.J., Pálfy, P.P.: On the order of primitive groups with restricted nonabelian composition factors. Journal of Algebra 79, 161–168 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Babai, L., Luks, E.M.: Canonical labeling of graphs. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, pp. 171–183 (1983)

    Google Scholar 

  3. Feit, W., Thompson, J.: Solvability of groups of odd order. Pacific Journal of Mathematics 13, 775–1029 (1963)

    MATH  MathSciNet  Google Scholar 

  4. Gutin, G., Yeo, A.: Hamiltonian Paths and Cycles in Hypertournaments. Journal of Graph Theory 25(4), 277–286 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: Its Structural Complexity. Birkhäuser, Boston (1993)

    MATH  Google Scholar 

  6. Liebeck, M., Shalev, A.: Simple groups, permutation groups and probability. Journal of Amer. Math. Soc. 12, 497–520 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Luks, E.M.: Permutation groups and polynomial time computations. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 11, 139–175 (1993)

    MathSciNet  Google Scholar 

  8. Luks, E.M.: Hypergraph isomorphism and structural equivalence of boolean functions. In: Proc. 31st ACM Symposium on Theory of Computing, pp. 652–658. ACM Press, New York (1999)

    Google Scholar 

  9. Wielandt, H.: Finite Permutation Groups. Acad. Press, New York (1964)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arvind, V., Das, B., Mukhopadhyay, P. (2006). On Isomorphism and Canonization of Tournaments and Hypertournaments. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_46

Download citation

  • DOI: https://doi.org/10.1007/11940128_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics