The Complexity of Quasigroup Isomorphism and the Minimum Generating Set Problem | SpringerLink
Skip to main content

The Complexity of Quasigroup Isomorphism and the Minimum Generating Set Problem

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

Motivated by Papadimitriou and Yannakakis’ paper on limited nondeterminism [19], we study two questions arising from their work: Quasigroup Isomorphism and the Minimum generating set problem for groups and quasigroups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arvind, V., Kurur, P.P.: Graph Isomorphism is in SPP. Information and Computation 204(5), 835–852 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arvind, V., Torán, J.: Solvable Group Isomorphism is (almost) in NP ∩ coNP. In: Proc. 19th IEEE Computational Complexity Conference Conference, pp. 91–103 (2004)

    Google Scholar 

  4. Balcázar, J.L., Díaz, J., Gabarró, J.: Structural Complexity I. In: EATCS Monographs on Theoretical Computer Science, Springer, Heidelberg (1989)

    Google Scholar 

  5. Babai, L.: Trading group theory for randomness. In: Proc. 17th ACM Symposium on Theory of Computing, pp. 421–429 (1985)

    Google Scholar 

  6. Beigel, R.: NP-hard sets are P-superterse unless R = NP (January 04, 1988)

    Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1992)

    Google Scholar 

  8. Díaz, J., Torán, J.: Classes of bounded nondeterminism. Math. Systems Theory 23, 21–32 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Even, S., Selman, A.L., Yacobi, Y.: The complexity of promise problems with applications to public-key cryptography. Information and Control 61(2), 159–173 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Feige, U., Kilian, J.: On Limited versus Polynomial Nondeterminism. Chicago Journal of Theoretical Computer Science (March 1997)

    Google Scholar 

  11. Goldsmith, J., Levy, M., Mundhenk, M.: Limited nondeterminism in SIGACT news (June 1996)

    Google Scholar 

  12. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof systems. In: Micali, S. (ed.) Advances in Computing Research, vol. 5, pp. 73–90. JAC Press, Inc. (1989)

    Google Scholar 

  13. Gorenstein, D.: Finite Groups. Harper and Row Publishers, New York (1968)

    MATH  Google Scholar 

  14. Hemachandra, L.: The strong exponential hierarchy collapses. In: Proc. 19th ACM Symposium on Theory of Computing, pp. 110–122 (1987)

    Google Scholar 

  15. Jenner, B., Torán, J.: Computing functions with parallel queries to NP. Theoretical Computer Science 141(1–2), 175–193 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kintala, C., Fischer, P.: Refining nondeterminism in relativized polynomial time computations. SIAM J. on Computing 9, 46–53 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Köbler, J., Schöning, U., Torán, J.: Graph Isomorphism: its Structural Complexity. Birkhäuser, Boston (1992)

    Google Scholar 

  18. Miller, G.L.: On the n logn isomorphism technique. In: Proc. 10th ACM Symposium on the Theory of Computing, pp. 51–58 (1978)

    Google Scholar 

  19. Papadimitriou, C., Yannakakis On, M.: limited nondeterminism and the complexity of the VC dimension. Journal of Computer and System Sciences 53(2), 161–170 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  20. Robinson, D.J.S.: A Course in the Theory of Groups. Graduate Texts in Mathematics. Springer, Heidelberg (1996)

    Google Scholar 

  21. Selman, A.L.: A taxonomy of complexity classes of functions. Journal of Computer and System Sciences 48(2), 357–381 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sipser, M.: A complexity theoretic approach to randomness. In: Proc. 15th ACM Symp. Theory of Computer Science, pp. 330–335 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arvind, V., Torán, J. (2006). The Complexity of Quasigroup Isomorphism and the Minimum Generating Set Problem. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_25

Download citation

  • DOI: https://doi.org/10.1007/11940128_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics