On Approximating the TSP with Intersecting Neighborhoods | SpringerLink
Skip to main content

On Approximating the TSP with Intersecting Neighborhoods

  • Conference paper
Algorithms and Computation (ISAAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Included in the following conference series:

Abstract

In the TSP with neighborhoods problem we are given a set of n regions (neighborhoods) in the plane, and seek to find a minimum length TSP tour that goes through all the regions. We give two approximation algorithms for the case when the regions are allowed to intersect: We give the first O(1)-factor approximation algorithm for intersecting convex fat objects of comparable diameters where we are allowed to hit each object only at a finite set of specified points. The proof follows from two packing lemmas that are of independent interest. For the problem in its most general form (but without the specified points restriction) we give a simple O(logn)-approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discrete Applied Mathematics 55(3), 197–218 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S.: Nearly linear time approximation schemes for euclidean TSP and other geometric problems. J. ACM 45(5), 1–30 (1998)

    Article  MathSciNet  Google Scholar 

  3. de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van der Stappen, A.F.: TSP with Neighborhoods of varying size. J. of Algorithms 57, 22–36 (2005)

    Article  MATH  Google Scholar 

  4. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in the plane. J. Algorithms 48(1), 135–159 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Elbassioni, K., Fishkin, A.V., Mustafa, N., Sitters, R.: Approximation algorithms for Euclidean group TSP. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1115–1126. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner tree problem. J. Algorithms 37(1), 66–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gudmundsson, J., Levcopoulos, C.: A fast approximation algorithm for TSP with neighborhoods. Nordic J. Computing 6(4), 469–488 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proc. 35th Annual ACM Symposium on Theory of Computing, pp. 585–594 (2003)

    Google Scholar 

  9. Mata, C.S., Mitchell, J.S.B.: Approximation algorithms for geometric tour and network design problems (extended abstract). In: Proc. 11th Annual ACM Symposium on Computational Geometry, pp. 360–369 (1995)

    Google Scholar 

  10. Mitchel, J.S.B.: Handbook of computational geometry. In: Geometric shortest paths and network optimization, pp. 633–701. Elsevier, North-Holland, Amsterdam (2000)

    Google Scholar 

  11. Mitchell, J.S.B.: Guillotine subdivions approximate polygonal subdivisons: A simple polynomial-time approximation scheme for geometric TSP, k-MST and related problems. SIAM J. Computing 28(4), 1298–1309 (1999)

    Article  MATH  Google Scholar 

  12. Mitchell, J.S.B.: A PTAS for TSP with neighborhoods among fat regions in the plane. In: Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (to appear, 2007)

    Google Scholar 

  13. Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization. In: Proc. 15th. Int. Workshop on Graph-theoretic Concepts in Computer Science, pp. 196–210. Springer, Heidelberg (1990)

    Google Scholar 

  14. Safra, S., Schwartz, O.: On the complexity of approximating TSP with Neighborhoods and related problems. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 446–458. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Slavik, P.: The errand scheduling problem, Tech. report, SUNY, Buffalo, USA (1997)

    Google Scholar 

  16. van der Stappen, A.F.: Motion planning amidst fat obstacles, Ph.d. dissertation, Utrecht University, Utrecht, the Netherlands (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elbassioni, K., Fishkin, A.V., Sitters, R. (2006). On Approximating the TSP with Intersecting Neighborhoods. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_23

Download citation

  • DOI: https://doi.org/10.1007/11940128_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics