Abstract
This paper presents a new multi-objective evolutionary algorithm which consists of a hybrid between a particle swarm optimization (PSO) approach and scatter search. The main idea of the approach is to combine the high convergence rate of the particle swarm optimization algorithm with a local search approach based on scatter search. We propose a new leader selection scheme for PSO, which aims to accelerate convergence. Upon applying PSO, scatter search acts as a local search scheme, improving the spread of the nondominated solutions found so far. Thus, the hybrid constitutes an efficient multi-objective evolutionary algorithm, which can produce reasonably good approximations of the Pareto fronts of multi-objective problems of high dimensionality, while only performing 4,000 fitness function evaluations. Our proposed approach is validated using ten standard test functions commonly adopted in the specialized literature. Our results are compared with respect to a multi-objective evolutionary algorithm that is representative of the state-of-the-art in the area: the NSGA-II.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, May 2002. Kluwer Academic Publishers, New York (2002)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, USA (2005)
Eshelman, L.J., Schaffer, J.D.: Real-coded Genetic Algorithms and Interval-Schemata. In: Darrell Whitley, L. (ed.) Foundations of Genetic Algorithms 2, pp. 187–202. Morgan Kaufmann Publishers, California (1993)
Glover, F.: Heuristic for integer programming using surrogate constraints. Decision Sciences 8, 156–166 (1977)
Glover, F.: Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Applied Mathematics 49(1-3), 231–255 (1994)
Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 13–54. Springer, Heidelberg (1998)
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, California (2001)
Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer, Heidelberg (1991)
Laguna, M., Martí, R.: Scatter Search: Methodology and Implementations in C. Kluwer Academic Publishers, Dordrecht (2003)
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (fall, 2002)
Mostaghim, S., Teich, J.: Strategies for Finding Good Local Guides in Multi-objective Particle Swarm Optimization (MOPSO). In: 2003 IEEE SIS Proceedings, Indianapolis, USA, April 2003, pp. 26–33. IEEE Service Center, Los Alamitos (2003)
Reyes-Sierra, M., Coello Coello, C.A.: Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2(3), 287–308 (2006)
Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (May 1999)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (summer, 2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Santana-Quintero, L.V., Ramírez, N., Coello, C.C. (2006). A Multi-objective Particle Swarm Optimizer Hybridized with Scatter Search. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_28
Download citation
DOI: https://doi.org/10.1007/11925231_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49026-5
Online ISBN: 978-3-540-49058-6
eBook Packages: Computer ScienceComputer Science (R0)