Abstract
Finding the right semantic distance to be used for information research, classification or text clustering using Natural Language Processing is a problem studied in several domains of computer science. We focus on measurements that are real distances: i.e. that satisfy all the properties of a distance. This paper presents one isa -distance measurement that may be applied to taxonomies. This distance, combined with a distance based on relations other than isa, may be a step towards a real semantic distance for ontologies. After presenting the purpose of this work and the position of our approach within the literature, we formally detail our isa-distance. It is extended to other relations and used to obtain a MDS projection of a musical ontology in an industrial project. The utility of such a distance in visualization, navigation, information research and ontology engineering is underlined.
An erratum to this chapter can be found at http://dx.doi.org/10.1007/11915072_109.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Besançon, R.: Intégration de connaissances syntaxiques et sémantiques dans les représentations vectorielles de textes – application au calcul de similarités sémantiques dans le cadre du modèle DSIR. Thèse de sciences EPFL, n° 2508 (2001)
Barthémemy, J.P., Guénoche, A.: Trees and Proximity Representation. Wiley & sons, Chichester, New-York (1991)
Budanitsky, A., Hirst, G.: Semantic Distance in WordNet: An Experimental, Application-oriented Evaluation of Five Measures. In: Workshop on WordNet and Other Lexical Resources, in the North American Chapter of the Association for Computational Linguistics, NAACL-2000, Pittsburgh, PA (June 2001)
Collective of authors: WordNet. An electronic lexical database. In: Fellbaum, C. (ed.) with a preface by George Miller, p. 422. MIT Press, Cambridge (1998)
Cordì, V., Lombardi, P., Martelli, M., Mascardi, V.: An Ontology-Based Similarity between Sets of Concepts. In: Corradini, F., De Paoli, F., Merelli, E., Omicini, A. (eds.) Proceedings of WOA 2005, Pitagora Editrice Bologna, pp. 16–21 (2005), ISBN 88-371-1590-3
Crampes, M., Ranwez, S., Villerd, J., Velickovski, F., Mooney, C., Emery, A., Mille, N.: Concept Maps for Designing Adaptive Knowledge Maps. In: Tergan, S.-O., Keller, T., Burkhard, R. (eds.) Concept Maps; A Special Issue of Information Visualization, vol. 5(3). Palgrave - Macmillan, Basingstoke (2006)
Crampes, M., Ranwez, S., Velickovski, F., Mooney, C., Mille, N.: An integrated visual approach for music indexing and dynamic playlist composition. In: Proc. 13th Annual Multimedia Computing and Networking (MMCN 2006), San Jose, CA, US (January 18-19, 2006)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph drawing. Algorithms for the visualisation of graphs. Prentice Hall, Upper Saddle River (1999)
Euzenat, J.: Représentations de connaissance: de l’approximation à la confrontation. Habilitation à diriger des recherches. Univ Grenoble 1, 116 (1999); English title : Knowledge representations : from approximation to confrontation
Hliautakis, A.: Semantic Similarity Measures in MeSH Ontology and their application to Information Retrieval on Medline. Dissertation Thesis, Technical Univ. of Crete (TUC), Dept. of Electronic and Computer Engineering, Chania, Crete, Greece (2005)
Jaillet, S., Teisseire, M., Dray, G., Plantié, M.: Comparing Concept-Based and Statistical Representations for Textual Categorization. In: Proceedings of 10th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2004), pp. 91–98 (2004)
Jing, L., Zhou, L., Ng, M.K., Huang, J.Z.: Ontology-based Distance Measure for Text Clustering. In: Proceedings of the Fourth Workshop on Text Mining, Sixth SIAM International Conference on Data Mining, Hyatt Regency Bethesda, Maryland (2006)
Ranwez, S.: Composition Automatique de Documents Hypermédia Adaptatifs à partir d’Ontologies et de Requêtes Intentionnelles de l’Utilisateur, PhD thesis in computer science, Montpellier II University (2000)
Resnik, P.: Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language. Journal of Artificial Intelligence Research 11, 95–130 (1999)
Roddick, J., Hornsby, K., de Vries, D.: A unifying semantic distance model for determining the similarity of attribute values. In: Proceedings of the 26th Australian Computer Science Conference (ACSC 2003), Adelaide, Australia (2003)
Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)
Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical systems. IEEE Trans. Syst. Man Cybern. SMC 11(2), 109–125 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ranwez, S., Ranwez, V., Villerd, J., Crampes, M. (2006). Ontological Distance Measures for Information Visualisation on Conceptual Maps. In: Meersman, R., Tari, Z., Herrero, P. (eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops. OTM 2006. Lecture Notes in Computer Science, vol 4278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11915072_7
Download citation
DOI: https://doi.org/10.1007/11915072_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48273-4
Online ISBN: 978-3-540-48276-5
eBook Packages: Computer ScienceComputer Science (R0)