Abstract
The simulation of land combat operations is a complex task. The space of possibilities is exponential and the performance criteria are usually in conflict; thus finding a sweet spot in this complex search space is a hard task. This paper focuses on the effect of population size and mutation rate on the performance of NSGA–II, as the evolutionary multiobjective optimization technique, to decide on the composition of forces using a complex land combat multi-agent scenario planning tool.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ursem, R.K.: Models for Evolutionary Algorithms and Their Applications in System Identification and Control Optimization. Ph.d. thesis, University of Aarhus, Denmark (2003)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)
Yang, A., Abbass, H.A., Sarker, R.: WISDOM-II: A network centric model for warfare. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3683, Springer, Heidelberg (2005)
Yang, A., Abbass, H.A., Sarker, R.: Landscape dynamics in multi-agent simulation combat systems. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, Springer, Heidelberg (2004)
Yang, A., Abbass, H.A., Sarker, R., Curtis, N.J.: Evolving capability requirements in WISDOM-II. In: Abbass, H.A., Bossamier, T., Wiles, J. (eds.) Advances in Artificial Life, Proceeding of The Second Australian Conference on Artificial Life (ACAL 2005), Sydney, Australia, pp. 335–348. World Scientific Publisher, Singapore (2005)
Deb, K., Agrawal, R.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)
Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics 26, 30–45 (1996)
Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm parameters. In: Banzhaf, W., Reeves, C. (eds.) Foundations of Genetic Algorithms 5, pp. 265–286. Morgan Kaufmann, San Francisco (1999)
Ballester, P.J., Carter, J.N.: Real-parameter genetic algorithms for finding multiple optimal solutions in multi-modal optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 706–717. Springer, Heidelberg (2003)
Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)
Iorio, A., Li, X.: A cooperative coevolutionary multiobjective algorithm using non-dominated sorting. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 537–548. Springer, Heidelberg (2004)
Zitzler, E., Thiele, L., Deb, K.: Comparision of multiobjective evolutionary algorithms: Emprical results. Evolutionary Computation 8, 173195 (2000)
Fonseca, C.M., Fleming, P.J.: On the performance assessment and comparison of stochastic multiobjective optimizers. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 584–593. Springer, Heidelberg (1996)
Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8, 149–172 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, A., Abbass, H.A., Sarker, R. (2006). Land Combat Scenario Planning: A Multiobjective Approach. In: Wang, TD., et al. Simulated Evolution and Learning. SEAL 2006. Lecture Notes in Computer Science, vol 4247. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11903697_105
Download citation
DOI: https://doi.org/10.1007/11903697_105
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-47331-2
Online ISBN: 978-3-540-47332-9
eBook Packages: Computer ScienceComputer Science (R0)