Abstract
Recent advances in large-scale sensor-network technologies enable the deployment of a huge number of sensors in the surrounding environment. Sensors do not live in isolation. Instead, close-by sensors experience similar environmental conditions. Hence, close-by sensors may indulge in a correlated behavior and generate a “phenomenon”. A phenomenon is characterized by a group of sensors that show “similar” behavior over a period of time. Examples of detectable phenomena include the propagation over time of a pollution cloud or an oil spill region. In this research, we propose a framework to detect and track various forms of phenomena in a sensor field. This framework empowers sensor database systems with phenomenon-awareness capabilities. Phenomenon-aware sensor database systems use high-level knowledge about phenomena in the sensor field to control the acquisition of sensor data and to optimize subsequent user queries. As a vehicle for our research, we build the Nile-PDT system, a framework for Phenomenon Detection and Tracking inside Nile, a prototype data stream management system developed at Purdue University.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. of VLDB (1994)
Ali, M.H., Aref, W.G., Bose, R., Elmagarmid, A.K., Helal, A., Kamel, I., Mokbel, M.F.: Nile-pdt: A phenomena detection and tracking framework for data stream management systems. In: Proc. of VLDB (2005)
Ali, M.H., Aref, W.G., Kamel, I.: Multi-way joins for sensor-network databases. Technical Report CSD-05-21, Department of Computer Science, Purdue University (2005)
Ali, M.H., Aref, W.G., Nita-Rotaru, C.: Spass: Scalable and energy-efficient data acquisition in sensor databases. In: Proc. of the International ACM Workshop on Data Engineering for Wireless and Mobile Access (MobiDE) (2005)
Ali, M.H., Mokbel, M.F., Aref, W.G., Kamel, I.: Detection and tracking of discrete phenomena in sensor-network databases. In: Proc. of SSDBM (2005)
Babcoc, B., Datar, M., Motwani, R.: Sampling from a moving window over streaming data. In: Proc. of the Annual ACM-SIAM Symp. on Discrete Algorithms (2002)
Bonnet, P., Gehrke, J.E., Seshadri, P.: Towards sensor database systems. In: Proc. of MDM (2001)
Cerpa, A., Estrin, D.: Ascent: Adaptive self-configuring sensor networks topologies. In: Proc. of INFOCOM (2002)
Considine, J., Li, F., Kollios, G., Byers, J.W.: Approximate aggregation techniques for sensor databases. In: Proc. of ICDE (2004)
Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-driven data acquisition in sensor networks. In: Proc. of VLDB (2004)
Golab, L., Ozsu, M.T.: Processing sliding window multi-joins in continuous queries over data streams. In: Proc. of VLDB (2003)
Hammad, M.A., Aref, W.G., Elmagarmid, A.K.: Stream window join: Tracking moving objects in sensor-network databases. In: Proc. of SSDBM (2003)
Hammad, M.A., Franklin, M., Aref, W.G., Elmagarmid, A.K.: Scheduling for shared window joins over data streams. In: Proc. of VLDB (2003)
Hammad, M.A., Mokbel, M.F., Ali, M.H., Aref, W.G., Catlin, A.C., Elmagarmid, A.K., Eltabakh, M., Elfeky, M.G., Ghanem, T., Gwadera, R., Ilyas, I.F., Marzouk, M., Xiong, X.: Nile: A query processing engine for data streams. In: Proc. of ICDE (2004)
Hellerstein, J.M., Hong, W., Madden, S., Stanek, K.: Beyond average: Toward sophisticated sensing with queries. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 63–79. Springer, Heidelberg (2003)
Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proc. of MOBICOM (2000)
Kang, J., Naughton, J.F., Viglas, S.D.: Evaluating window joins over unbounded streams. In: Proc. of ICDE (2003)
Kulik, J., Heinzelman, W.R., Balakrishnan, H.: Negotiation-based protocols for disseminating information in wireless sensor networks. ACM Wireless Networks 8(2-3), 169–185 (2002)
Madden, S., Franklin, M.: Fjording the stream: An architecture for queries over streaming sensor data. In: Proc. of ICDE (2002)
Madden, S., Franklin, M., Hellerstein, J.M., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proc. of SIGMOD (2003)
Mokbel, M., Lu, M., Aref, W.: Hash-merge join: A non-blocking join algorithm for producing fast and early join results. In: Proc. of ICDE (2004)
Nowak, R., Mitra, U.: Boundary estimation in sensor networks: Theory and methods. In: Proc. of IPSN (2003)
Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance improvements. In: Proc. of EDBT (1996)
Srinivasan, S., Latchman, H., Shea, J., Wong, T., McNair, J.: Airborne traffic surveillance systems: video surveillance of highway traffic. In: The 2nd ACM international workshop on Video surveillance & sensor networks (2004)
Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin, D.: Habitat monitoring with sensor networks. Communications of ACM 47(6), 34–40 (2004)
Urhan, T., Franklin, M.: Xjoin: A reactively-scheduled pipelined join operator. IEEE Data Eng. Bull. 23(2), 27–33 (2000)
Wilschut, A.N., Apers, E.M.G.: Pipelining in query execution. In: Proc. of the International Conference on Databases, Parallel Architectures and their Applications (1991)
Xu, Y., Winter, J., Lee, W.-C.: Prediction-based strategies for energy saving in object tracking sensor networks. In: Proc. of MDM (2004)
Yao, Y., Gehrke, J.: Query processing in sensor networks. In: Proc. of CIDR (2003)
Zhang, W., Cao, G.: Optimizing tree reconfiguration for mobile target tracking in sensor networks. In: Proc. of INFOCOM (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ali, M.H. (2006). Phenomenon-Aware Sensor Database Systems. In: Grust, T., et al. Current Trends in Database Technology – EDBT 2006. EDBT 2006. Lecture Notes in Computer Science, vol 4254. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11896548_1
Download citation
DOI: https://doi.org/10.1007/11896548_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46788-5
Online ISBN: 978-3-540-46790-8
eBook Packages: Computer ScienceComputer Science (R0)