Prototype-Based Threshold Rules | SpringerLink
Skip to main content

Prototype-Based Threshold Rules

  • Conference paper
Neural Information Processing (ICONIP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4234))

Included in the following conference series:

  • 2338 Accesses

Abstract

Understanding data is usually done extracting fuzzy or crisp logical rules using neurofuzzy systems, decision trees and other approaches. Prototype-based rules are an interesting alternative providing in many cases simpler, more accurate and more comprehensible description of the data. Algorithm for generation of threshold prototype-based rules are described and a comparison with neurofuzzy systems on a number of datasets provided. Results show that systems for data understanding generating prototypes deserve at least the same attention as that enjoyed by the neurofuzzy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duch, W., Setiono, R., Zurada, J.M.: Computational intelligence methods for understanding of data. Proc. of the IEEE 92(5), 771–805 (2004)

    Article  Google Scholar 

  2. Ye, N.: The handbook of data mining. Lawrence Erlbaum Associates, London (2003)

    Google Scholar 

  3. Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  4. Breiman, L., Friedman, J.H., Oslhen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

  5. Grąbczewski, K., Duch, W.: The separability of split value criterion. In: 5th Conference on Neural Network and Soft Computing, pp. 201–208. Polish Neural Network Society, Zakopane, Poland (2000)

    Google Scholar 

  6. Jankowski, N., Grąbczewski, K., Duch, W., Naud, A., Adamczak, R.: Ghostminer data mining software, http://www.fqspl.com.pl/ghostminer/

  7. Pedrycz, W.: Fuzzy set technology in knowledge discovery. Fuzzy Sets and Systems 98, 279–290 (1998)

    Article  Google Scholar 

  8. Duch, W.: Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics 29(4), 937–968 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Duch, W., Grudziński, K.: Prototype based rules - a new way to understand the data. In: Proc. of the International Joint Conference on Neural Networks (IJCNN) 2001, Washington D.C, USA, pp. 1858–1863 (2001)

    Google Scholar 

  10. Grąbczewski, K., Duch, W.: Heterogenous forests of decision trees. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 504–509. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  12. Nauck, D., Klawonn, F., Kruse, R.: Foundations on Neuro-Fuzzy Systems. J. Wiley, New York (1997)

    Google Scholar 

  13. Pal, S.K., Mitra, S.: Neuro-Fuzzy Pattern Recognition. J. Wiley, New York (1999)

    Google Scholar 

  14. Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  15. Duch, W., Blachnik, M.: Fuzzy rule-based system derived from similarity to prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Mertz, C.J., Murphy, P.M.: UCI repository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-databases

  17. Nauck, D., Nauck, U.: http://fuzzy.cs.uni-magdeburg.de/nefclass/nefclass.html

  18. Walker, A.J., Cross, S.S., Harrison, R.F.: Visualization of biomedical datasets by use of growing cell structure networks: a novel diagnostic classification technique. Lancet 354, 1518–1522 (1999)

    Article  Google Scholar 

  19. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  20. Michie, D., Spiegelhalter, D.J., Taylor, C.C. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood (1994)

    Google Scholar 

  21. Shakhnarovish, G., Darrell, T., Indyk, P. (eds.): Nearest-Neighbor Methods in Learning and Vision. MIT Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blachnik, M., Duch, W. (2006). Prototype-Based Threshold Rules. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_113

Download citation

  • DOI: https://doi.org/10.1007/11893295_113

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46484-6

  • Online ISBN: 978-3-540-46485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics