Abstract
Understanding data is usually done extracting fuzzy or crisp logical rules using neurofuzzy systems, decision trees and other approaches. Prototype-based rules are an interesting alternative providing in many cases simpler, more accurate and more comprehensible description of the data. Algorithm for generation of threshold prototype-based rules are described and a comparison with neurofuzzy systems on a number of datasets provided. Results show that systems for data understanding generating prototypes deserve at least the same attention as that enjoyed by the neurofuzzy systems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duch, W., Setiono, R., Zurada, J.M.: Computational intelligence methods for understanding of data. Proc. of the IEEE 92(5), 771–805 (2004)
Ye, N.: The handbook of data mining. Lawrence Erlbaum Associates, London (2003)
Quinlan, J.R.: C4.5: Programs for machine learning. Morgan Kaufmann, San Francisco (1993)
Breiman, L., Friedman, J.H., Oslhen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group, Belmont (1984)
Grąbczewski, K., Duch, W.: The separability of split value criterion. In: 5th Conference on Neural Network and Soft Computing, pp. 201–208. Polish Neural Network Society, Zakopane, Poland (2000)
Jankowski, N., Grąbczewski, K., Duch, W., Naud, A., Adamczak, R.: Ghostminer data mining software, http://www.fqspl.com.pl/ghostminer/
Pedrycz, W.: Fuzzy set technology in knowledge discovery. Fuzzy Sets and Systems 98, 279–290 (1998)
Duch, W.: Similarity based methods: a general framework for classification, approximation and association. Control and Cybernetics 29(4), 937–968 (2000)
Duch, W., Grudziński, K.: Prototype based rules - a new way to understand the data. In: Proc. of the International Joint Conference on Neural Networks (IJCNN) 2001, Washington D.C, USA, pp. 1858–1863 (2001)
Grąbczewski, K., Duch, W.: Heterogenous forests of decision trees. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 504–509. Springer, Heidelberg (2002)
Kosko, B.: Neural Networks and Fuzzy Systems. Prentice-Hall, Englewood Cliffs (1992)
Nauck, D., Klawonn, F., Kruse, R.: Foundations on Neuro-Fuzzy Systems. J. Wiley, New York (1997)
Pal, S.K., Mitra, S.: Neuro-Fuzzy Pattern Recognition. J. Wiley, New York (1999)
Wilson, D.R., Martinez, T.R.: Improved Heterogeneous Distance Functions. Journal of Artificial Intelligence Research 6, 1–34 (1997)
Duch, W., Blachnik, M.: Fuzzy rule-based system derived from similarity to prototypes. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 912–917. Springer, Heidelberg (2004)
Mertz, C.J., Murphy, P.M.: UCI repository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-databases
Nauck, D., Nauck, U.: http://fuzzy.cs.uni-magdeburg.de/nefclass/nefclass.html
Walker, A.J., Cross, S.S., Harrison, R.F.: Visualization of biomedical datasets by use of growing cell structure networks: a novel diagnostic classification technique. Lancet 354, 1518–1522 (1999)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Michie, D., Spiegelhalter, D.J., Taylor, C.C. (eds.): Machine Learning, Neural and Statistical Classification. Ellis Horwood (1994)
Shakhnarovish, G., Darrell, T., Indyk, P. (eds.): Nearest-Neighbor Methods in Learning and Vision. MIT Press, Cambridge (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blachnik, M., Duch, W. (2006). Prototype-Based Threshold Rules. In: King, I., Wang, J., Chan, LW., Wang, D. (eds) Neural Information Processing. ICONIP 2006. Lecture Notes in Computer Science, vol 4234. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11893295_113
Download citation
DOI: https://doi.org/10.1007/11893295_113
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46484-6
Online ISBN: 978-3-540-46485-3
eBook Packages: Computer ScienceComputer Science (R0)