Boosting Open CSPs | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4204))

Abstract

In previous work, a new approach called Open CSP (OCSP) was defined as a way of integrate information gathering and problem solving. Instead of collecting all variable values before CSP resolution starts, OCSP asks for values dynamically as required by the solving process, starting from possibly empty domains. This strategy permits to handle unbounded domains keeping completeness. However, current OCSP algorithms show a poor performance. For instance, the FO-Search algorithm uses a Backtracking and needs to solve the new problem from scratch every time a new value is acquired. In this paper we improve the original algorithm for the OCSP model. Our contribution is two-fold: we incorporate local consistency and we avoid solving subproblems already explored in previous steps. Moreover, these two contributions guarantee the completeness of the algorithm and they do not increase the number of values needed for finding a solution. We provide experimental results than confirm a significant speed-up on the original approach.

Research partially supported by TIN2004-07933-C03-03, TIN2005-09312-C03-01 and TIC2003-00950 funded by the Ministerio de Educación y Ciencia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nodine, M., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M., Unruh, A.: Active Information Gathering in InfoSleuth. International Journal of Cooperative Information Systems 9, 3–28 (2000)

    Article  Google Scholar 

  2. Genesereth, M., Keller, R., Duschka, A.M.: Infomaster: An Information Integration System. In: Proceedings of 1997 ACM SIGMOD Conference (May 1997)

    Google Scholar 

  3. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying Heterogeneous Information Sources Using Source Descriptions. In: Alon, Y. (ed.) Proceedings of the Twenty-second International Conference on Very Large Databases, VLDB Endowment, Saratoga, Calif., Bombay, India, pp. 251–262 (1996)

    Google Scholar 

  4. Freuder, E.C., Hubbe, P.D.: Extracting Constraint Satisfaction Subproblems. In: IJCAI 1995, pp. 548–557 (1995)

    Google Scholar 

  5. Macho-Gonzalez, S., Meseguer, P.: Open, Interactive and Dynamic CSP. In: Changes 2005 International Workshop on Constraint Solving under Change and Uncertainty (CP 2005) (2005)

    Google Scholar 

  6. Faltings, B., Macho-Gonzalez, S.: Open Constraint Programming. Artificial Intelligence 161, 181–208 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wiederhold, G., Genesereth, M.R.: The Conceptual Basis for Mediation Services. IEEE Expert 12(5), 38–47 (1997)

    Article  Google Scholar 

  8. Jiang, Y., Richards, T., Richards, B.: No-good backmarking with min-conflicts repair in constraint satisfaction and optimization. In: Proceedings of Principles and Practice of Constraint Programming, vol. 94, pp. 21–39 (1994)

    Google Scholar 

  9. Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic Constraint Satisfaction Problems. International Journal on Artificial Intelligence Tools 3(2), 187–207 (1994)

    Article  Google Scholar 

  10. Kondrak, G., van Beek, P.: A theoretical evaluation of selected backtracking algorithms. Artificial Intelligence 89, 365–387 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Haralick, Elliot: Increasing tree search efficiency for constraint-satisfaction problems. Artificial Intelligence 14(3), 263–313 (1980)

    Article  Google Scholar 

  12. Rossi, F., Petrie, C., Dhar, V.: In the equivalence of constraint satisfaction problems. In: Proc. ECAI 1990, pp. 550–556 (1990)

    Google Scholar 

  13. Stergiou, K., Walsh, T.: Encodings of Non-binary Constraint Satisfaction Problems. In: Proceedings of AAAI/IAAI, pp. 163–168 (1999)

    Google Scholar 

  14. Lamma, E., Mello, P., Milano, M., Cucchiara, R., Gavanelli, M., Piccardi, M.: Constraint Propagation and Value Acquisition: Why we should do it Interactively. In: Proceeding of IJCAI 1999, pp. 468–477 (1999)

    Google Scholar 

  15. Schiex, T., Verfaillie, G.: Nogood Recording for Static and Dynamic Constraint Satisfaction Problem. International Journal of Artificial Intelligence Tools 2(3), 187–207 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González, S.M., Ansótegui, C., Meseguer, P. (2006). Boosting Open CSPs. In: Benhamou, F. (eds) Principles and Practice of Constraint Programming - CP 2006. CP 2006. Lecture Notes in Computer Science, vol 4204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889205_24

Download citation

  • DOI: https://doi.org/10.1007/11889205_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46267-5

  • Online ISBN: 978-3-540-46268-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics