A Dynamic Convexized Function with the Same Global Minimizers for Global Optimization | SpringerLink
Skip to main content

A Dynamic Convexized Function with the Same Global Minimizers for Global Optimization

  • Conference paper
Advances in Natural Computation (ICNC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4221))

Included in the following conference series:

Abstract

We consider the box constrained continuous global minimization problem. We present an auxiliary function T(x, k, p), which has the same global minimizers as the problem if p is large enough. The minimization of T(x, k, p) can escape successfully from a previously converged local minimizer by taking the value of k increasingly. We propose an algorithm to find a global minimizer of the box constrained continuous global minimization problem by minimizing T(x, k, p) dynamically. Numerical experiments on two sets of standard testing problems show that the algorithm is effective, and is competent with some well known global minimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boender, C., Rinnooy Kan, A., Stougie, L., Timmer, G.: A stochastic method for global optimization. Mathematical Programming 22, 125–140 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cetin, B., Barhne, J., Burdick, J.: Terminal repeller unconstrained subenergy tunneling (TRUST) for fast global optimization. Journal of Optimization Theory and Applications 77(1), 97–126 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cvijović, D., Klinowski, J.: Taboo search: an approach to the multiple minima probelm. Science 267, 664–666 (1995)

    Article  MathSciNet  Google Scholar 

  4. Dixon, L., Szegö, G.: The Global Optimization Problem: an Introduction. In: Dixon, L.C.W., Szegö, G.P. (eds.) Towards Global Optimization 2, North-Holland, Amsterdam, pp. 1–15 (1978)

    Google Scholar 

  5. Ge, R.: A filled function method for finding a global minimizer of a function of several variables. Mathematical Programming 46, 191–204 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ge, R., Qin, Y.: A class of filled functions for finding global minimizers of a function of several variables. Journal of Optimization Theory and Applications 52, 240–252 (1987)

    MathSciNet  Google Scholar 

  7. Horst, R., Pardalos, P., Thoai, N.: Introduction to Global Optimization, 2nd edn. Kluwer Academic Publishers, Dordrechet, The Netherlands (2000)

    MATH  Google Scholar 

  8. Jones, D., Perttunen, C., Stuckman, B.: Lipschizian optimization without Lipstchitz constant. Journal of Optimization Theory and Appliations 79, 157–181 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kostrowicki, J., Piela, L.: Diffusion equation method of global minimization: performance for standard test functions. Journal of Optimization Theory and Applications 69(2), 97–126 (1991)

    Article  MathSciNet  Google Scholar 

  10. Levy, A., Montalvo, A.: The tunneling algorithm for the global minimization of functions. SIAM Journal on Scientific and Statistical Computing 6, 15–29 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Locatelli, M.: Simulated Annealing Algorithms For Continuous Global Optimization. In: Handbook of Global Optimization II, pp. 179–230. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  12. Snyman, J., Fatti, L.: A multi-start global minimization algorithm with dynamic search trajectories. Journal of Optimization Theory and Applications 54, 121–141 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Storn, R., Price, K.: Differntial evolution - a simple and efficient heuristic for global minimization over continuous spaces. Journal of Gloabal Optimization 11, 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yao, Y.: Dynamic tunneling algorithm for global optimization. IEEE Transactions on Systems, Man, and Cybernetics 19, 1222–1230 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, W. (2006). A Dynamic Convexized Function with the Same Global Minimizers for Global Optimization. In: Jiao, L., Wang, L., Gao, Xb., Liu, J., Wu, F. (eds) Advances in Natural Computation. ICNC 2006. Lecture Notes in Computer Science, vol 4221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11881070_124

Download citation

  • DOI: https://doi.org/10.1007/11881070_124

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45901-9

  • Online ISBN: 978-3-540-45902-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics