Diagnosis of Incipient Fault of Power Transformers Using SVM with Clonal Selection Algorithms Optimization | SpringerLink
Skip to main content

Diagnosis of Incipient Fault of Power Transformers Using SVM with Clonal Selection Algorithms Optimization

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4203))

Included in the following conference series:

  • 1163 Accesses

Abstract

In this study we explore the feasibility of applying Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to the prediction of incipient power transformer faults. A clonal selection algorithm (CSA) is introduced for the first time in the literature to select optimal input features and RBF kernel parameters. CSA is shown to be capable of improving the speed and accuracy of classification systems by removing redundant and potentially confusing input features, and of optimizing the kernel parameters simultaneously. Simulation results on practice data demonstrate the effectiveness and high efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. IEC Publication 599, Interpretation of The Analysis of Gases in Transformers And Other Oil-Filled Electrical Equipment In Service, 1st edn (1978)

    Google Scholar 

  2. IEEE Guide for The Interpretation of Gases Generated In Oil-Immersed Transformers, IEEE Std.C57.104-1991

    Google Scholar 

  3. Rogers, R.R.: IEEE And IEC Codes to Interpret Faults in Transformers Using Gas in Oil Analysis. IEEE Trans Electron. Insulat. 13(5), 349–354 (1978)

    Article  Google Scholar 

  4. Dong, M.: Fault Diagnosis Model Power Transformer Based on Statistical Learning Theory and Dissolved Gas Analysis. In: IEEE 2004 Internation Symposium on Electrical Insulation, pp. 85–88 (2004)

    Google Scholar 

  5. Wang, N.C.: Development of Monitoring and On-line Diagnosing System for Large Power Transformers, Power Reserch Institute, TPC

    Google Scholar 

  6. Purkait, P., Chakravorti, S.: An expert system for fault diagnosis in transformers during impulse tests. In: Power Engineering Society Winter Meeting, January 23–27, 2000, vol. 3, pp. 2181–2186 (2000)

    Google Scholar 

  7. Su, Q., Mi, C., Lai, L.L., Austin, P.: A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer. IEEE Trans. Power Syst. 15(2), 593–598 (2000)

    Article  Google Scholar 

  8. Jack, L.B., Nandi, A.K.: Fault Detection Using Support Vector Machines and Artificial Neural Networks: Augmented by Genetic Algorithms. Mech. Syst. Signal Process. 16(2–3), 373–390 (2002)

    Article  Google Scholar 

  9. Yann, C.H.: A new data mining approach to dissolved gas analysis of oil-insulated power apparatus. IEEE Trans. Power Deliv. 18(4), 1257–1261 (2003)

    Article  Google Scholar 

  10. Huang, Y.C., Yang, H.T., Huang, C.L.: Developing a new transformer fault diagnosis system through evolutionary fuzzy logic. IEEE Trans. Power Deliv. 12(2), 761–767 (1997)

    Article  Google Scholar 

  11. Hong, T.Y., Chiung, C.L.: Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers. IEEE Trans. Power Deliv. 14(4), 1342–1350 (1999)

    Article  Google Scholar 

  12. Wang, M.H.: Extension neural network for power transformer incipient fault diagnosis. In: IEE Proceedings – Generation, Transmission and Distribution vol. 150, pp. 679–685 (2003)

    Google Scholar 

  13. Yann, C.H.: Evolving neural nets for fault diagnosis of power transformers. IEEE Trans. Power Deliv. 18(3), 843–848 (2003)

    Article  Google Scholar 

  14. Cortes, C., Vapnik, V.: Support-vector Networks. Machine Learn. 20(3), 273–295 (1995)

    MATH  Google Scholar 

  15. Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using feature optimization and _-support vector learning Neural Networks for Signal Processing XI. In: Proceedings of the 2001 IEEE Signal, Processing Society Workshop, September 10–12, 2001, pp. 373–382 (2001)

    Google Scholar 

  16. Tay Francis, E.H., Cao, L.J.: Application of support vector machines in financial time series forecasting. Omega 29(4), 309–317 (2001)

    Article  Google Scholar 

  17. Chan, W.C., Chan, C.W., Cheung, K.C., Harris, C.J.: On the modeling of nonlinear dynamic systems using support vector neural networks. Eng. Appl. Artif. Intell. 14, 105–113 (2001)

    Article  Google Scholar 

  18. Vapnik, V., Golowich, S., Smola, A.: Support Vector Method for Function Approximation, Regression Estimation, And Signal Processing. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Neural Information Processing Systems, p. 9. MIT Press, Cambridge (1997)

    Google Scholar 

  19. Chapelle, O., Vapnik, V.: Model selection for Support Vector Machines. In: Solla, S., Leen, T., Muller, K.-R. (eds.) Advances in Neural Information Processing Systems, vol. 12, MIT Press, Cambridge (2000)

    Google Scholar 

  20. Chapelle, O., Vapnik, V., Bousqet, O., Mukherjee, S.: Choosing Multiple Parameters for Support Vector Machines. Machine Learning 46(1), 131–159 (2002)

    Article  MATH  Google Scholar 

  21. Cortes, C., Vapnik, V.: Support Vector Networks. Mach Learning 20(3), 273–295 (1995)

    MATH  Google Scholar 

  22. Frohlich, H.: Feature Selection for Support Vector Machines by Means of Genetic Algorithms. Master’s thesis, University of Marburg (2002)

    Google Scholar 

  23. de Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems: Part I – Basic Theory and Applications, Technical Report – RT DCA 01/99, p. 90 (1999)

    Google Scholar 

  24. Yan, W.W., Shao, H.H.: Application of Support Vector Machine Nonlinear Classifier to Fault Diagnoses. In: Proceedings of the Fourth World Congress Intelligent Control and Automation, 10–14 Shanghai, China, June 2002, pp. 2697–2670 (2002)

    Google Scholar 

  25. Lee, J.H., Lin, C.J.: Automatic model selection for support vector machines, Technical Report, Dept. of Computer Science and Information Engineering, Taipei, Taiwan (November 2000)

    Google Scholar 

  26. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  27. Duval, M.: Interpretation of Gas-In-Oil Analysis Using New IEC Publication 60599 and IEC TC 10 Databases. IEEE Electrical Insulation Magazine 17(2) (March/April 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, TF., Cho, MY., Shieh, CS., Lee, HJ., Fang, FM. (2006). Diagnosis of Incipient Fault of Power Transformers Using SVM with Clonal Selection Algorithms Optimization. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_65

Download citation

  • DOI: https://doi.org/10.1007/11875604_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45764-0

  • Online ISBN: 978-3-540-45766-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics