Abstract
In this study we explore the feasibility of applying Artificial Neural Networks (ANN) and Support Vector Machines (SVM) to the prediction of incipient power transformer faults. A clonal selection algorithm (CSA) is introduced for the first time in the literature to select optimal input features and RBF kernel parameters. CSA is shown to be capable of improving the speed and accuracy of classification systems by removing redundant and potentially confusing input features, and of optimizing the kernel parameters simultaneously. Simulation results on practice data demonstrate the effectiveness and high efficiency of the proposed approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
IEC Publication 599, Interpretation of The Analysis of Gases in Transformers And Other Oil-Filled Electrical Equipment In Service, 1st edn (1978)
IEEE Guide for The Interpretation of Gases Generated In Oil-Immersed Transformers, IEEE Std.C57.104-1991
Rogers, R.R.: IEEE And IEC Codes to Interpret Faults in Transformers Using Gas in Oil Analysis. IEEE Trans Electron. Insulat. 13(5), 349–354 (1978)
Dong, M.: Fault Diagnosis Model Power Transformer Based on Statistical Learning Theory and Dissolved Gas Analysis. In: IEEE 2004 Internation Symposium on Electrical Insulation, pp. 85–88 (2004)
Wang, N.C.: Development of Monitoring and On-line Diagnosing System for Large Power Transformers, Power Reserch Institute, TPC
Purkait, P., Chakravorti, S.: An expert system for fault diagnosis in transformers during impulse tests. In: Power Engineering Society Winter Meeting, January 23–27, 2000, vol. 3, pp. 2181–2186 (2000)
Su, Q., Mi, C., Lai, L.L., Austin, P.: A fuzzy dissolved gas analysis method for the diagnosis of multiple incipient faults in a transformer. IEEE Trans. Power Syst. 15(2), 593–598 (2000)
Jack, L.B., Nandi, A.K.: Fault Detection Using Support Vector Machines and Artificial Neural Networks: Augmented by Genetic Algorithms. Mech. Syst. Signal Process. 16(2–3), 373–390 (2002)
Yann, C.H.: A new data mining approach to dissolved gas analysis of oil-insulated power apparatus. IEEE Trans. Power Deliv. 18(4), 1257–1261 (2003)
Huang, Y.C., Yang, H.T., Huang, C.L.: Developing a new transformer fault diagnosis system through evolutionary fuzzy logic. IEEE Trans. Power Deliv. 12(2), 761–767 (1997)
Hong, T.Y., Chiung, C.L.: Adaptive fuzzy diagnosis system for dissolved gas analysis of power transformers. IEEE Trans. Power Deliv. 14(4), 1342–1350 (1999)
Wang, M.H.: Extension neural network for power transformer incipient fault diagnosis. In: IEE Proceedings – Generation, Transmission and Distribution vol. 150, pp. 679–685 (2003)
Yann, C.H.: Evolving neural nets for fault diagnosis of power transformers. IEEE Trans. Power Deliv. 18(3), 843–848 (2003)
Cortes, C., Vapnik, V.: Support-vector Networks. Machine Learn. 20(3), 273–295 (1995)
Lu, J.W., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using feature optimization and _-support vector learning Neural Networks for Signal Processing XI. In: Proceedings of the 2001 IEEE Signal, Processing Society Workshop, September 10–12, 2001, pp. 373–382 (2001)
Tay Francis, E.H., Cao, L.J.: Application of support vector machines in financial time series forecasting. Omega 29(4), 309–317 (2001)
Chan, W.C., Chan, C.W., Cheung, K.C., Harris, C.J.: On the modeling of nonlinear dynamic systems using support vector neural networks. Eng. Appl. Artif. Intell. 14, 105–113 (2001)
Vapnik, V., Golowich, S., Smola, A.: Support Vector Method for Function Approximation, Regression Estimation, And Signal Processing. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Neural Information Processing Systems, p. 9. MIT Press, Cambridge (1997)
Chapelle, O., Vapnik, V.: Model selection for Support Vector Machines. In: Solla, S., Leen, T., Muller, K.-R. (eds.) Advances in Neural Information Processing Systems, vol. 12, MIT Press, Cambridge (2000)
Chapelle, O., Vapnik, V., Bousqet, O., Mukherjee, S.: Choosing Multiple Parameters for Support Vector Machines. Machine Learning 46(1), 131–159 (2002)
Cortes, C., Vapnik, V.: Support Vector Networks. Mach Learning 20(3), 273–295 (1995)
Frohlich, H.: Feature Selection for Support Vector Machines by Means of Genetic Algorithms. Master’s thesis, University of Marburg (2002)
de Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems: Part I – Basic Theory and Applications, Technical Report – RT DCA 01/99, p. 90 (1999)
Yan, W.W., Shao, H.H.: Application of Support Vector Machine Nonlinear Classifier to Fault Diagnoses. In: Proceedings of the Fourth World Congress Intelligent Control and Automation, 10–14 Shanghai, China, June 2002, pp. 2697–2670 (2002)
Lee, J.H., Lin, C.J.: Automatic model selection for support vector machines, Technical Report, Dept. of Computer Science and Information Engineering, Taipei, Taiwan (November 2000)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Duval, M.: Interpretation of Gas-In-Oil Analysis Using New IEC Publication 60599 and IEC TC 10 Databases. IEEE Electrical Insulation Magazine 17(2) (March/April 2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, TF., Cho, MY., Shieh, CS., Lee, HJ., Fang, FM. (2006). Diagnosis of Incipient Fault of Power Transformers Using SVM with Clonal Selection Algorithms Optimization. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_65
Download citation
DOI: https://doi.org/10.1007/11875604_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45764-0
Online ISBN: 978-3-540-45766-4
eBook Packages: Computer ScienceComputer Science (R0)