Abstract
3D ultrasound is a unique medical imaging modality for observing the growth and malformation of the fetus. But it is necessary to enhance its visual quality by filtering to reduce speckle noise and artifacts. Because imaging of fetuses takes place real time, these processes must also be fast. Previous methods have limited speed, quality, or are only applicable to 2D. We propose a new 3D filtering technique for 3D US fetus volume data which classifies the volume according to local coherence and applies different filters to the volume of interest and to the rest of the 3D image. The volume of interest, which contains the fetus, is determined automatically from key frames, and is processed using a nonlinear coherence enhancing diffusion (NCED) filter. Our method enhances 3D US fetus images more effectively than previous techniques, runs more quickly, and reduces the number of artifacts because it is a true extension to 3D.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Suetens, P.: Fundamentals of Medical Imaging. Cambridge University Press, Cambridge (2002)
Weickert, J., Zuiderveld, K.J., ter Haar Romeny, B.M., Niessen, W.J.: Parallel implementations of AOS schemes: A fast way of nonlinear diffusion filtering. In: Proc. 1997 IEEE International Conference on Image Processing, vol. 3, pp. 396–399 (1997)
Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2003)
Perona, P., Malik, J.: Scale Space and Edge Detection using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)
Weickert, J.: Multiscale Texture Enhancement. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 230–237. Springer, Heidelberg (1995)
Weickert, J.: Coherence-Enhancing Diffusion Filtering. International Journal of Computer Vision 31, 111–127 (1999)
Yu, Y., Acton, S.T.: Speckle Reducing Anisotropic Diffusion. IEEE Transactions on Image Processing 11(11), 1260–1270 (2002)
Sun, Q., Hossack, J.A., Tang, J., Acton, S.T.: Speckle Reducing Anisotropic Diffusion for 3D Ultrasound Images. Computerized Medical Imaging and Graphics 28, 461–470 (2004)
Abd-Elmoniem, K.Z., Youssef, A.M., Kadah, Y.M.: Real-time Speckle Reduction and Coherence Enhancement in Ultrasound Imaging via Nonlinear Anisotropic Diffusion. IEEE Transactions of Biomedical Engineering 49(9), 997–1014 (2002)
Nguyen, T.D., Kim, S.-H., Kim, N.C.: An Automatic Body ROI Determination for 3D Visualization of a Fetal Ultrasound Volume. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 145–153. Springer, Heidelberg (2005)
Kühne, G.: Motion-based Segmentation and Classification of Video Objects., PhD Dissertation, Mannheim University (2002)
Jardim, S.V., Figueiredo, M.A.: Automatic Contour Estimation in Fetal Ultrasound Images. In: The IEEE International Conference in Image Processing, pp. 1065–1068 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, MJ., Yun, HJ., Kim, MH. (2006). Faster, More Accurate Diffusion Filtering for Fetal Ultrasound Volumes. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867661_47
Download citation
DOI: https://doi.org/10.1007/11867661_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44894-5
Online ISBN: 978-3-540-44896-9
eBook Packages: Computer ScienceComputer Science (R0)