Faster, More Accurate Diffusion Filtering for Fetal Ultrasound Volumes | SpringerLink
Skip to main content

Faster, More Accurate Diffusion Filtering for Fetal Ultrasound Volumes

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4142))

Included in the following conference series:

  • 1494 Accesses

Abstract

3D ultrasound is a unique medical imaging modality for observing the growth and malformation of the fetus. But it is necessary to enhance its visual quality by filtering to reduce speckle noise and artifacts. Because imaging of fetuses takes place real time, these processes must also be fast. Previous methods have limited speed, quality, or are only applicable to 2D. We propose a new 3D filtering technique for 3D US fetus volume data which classifies the volume according to local coherence and applies different filters to the volume of interest and to the rest of the 3D image. The volume of interest, which contains the fetus, is determined automatically from key frames, and is processed using a nonlinear coherence enhancing diffusion (NCED) filter. Our method enhances 3D US fetus images more effectively than previous techniques, runs more quickly, and reduces the number of artifacts because it is a true extension to 3D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Suetens, P.: Fundamentals of Medical Imaging. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  2. Weickert, J., Zuiderveld, K.J., ter Haar Romeny, B.M., Niessen, W.J.: Parallel implementations of AOS schemes: A fast way of nonlinear diffusion filtering. In: Proc. 1997 IEEE International Conference on Image Processing, vol. 3, pp. 396–399 (1997)

    Google Scholar 

  3. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  4. Perona, P., Malik, J.: Scale Space and Edge Detection using Anisotropic Diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  5. Weickert, J.: Multiscale Texture Enhancement. In: Hlaváč, V., Šára, R. (eds.) CAIP 1995. LNCS, vol. 970, pp. 230–237. Springer, Heidelberg (1995)

    Google Scholar 

  6. Weickert, J.: Coherence-Enhancing Diffusion Filtering. International Journal of Computer Vision 31, 111–127 (1999)

    Article  Google Scholar 

  7. Yu, Y., Acton, S.T.: Speckle Reducing Anisotropic Diffusion. IEEE Transactions on Image Processing 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  8. Sun, Q., Hossack, J.A., Tang, J., Acton, S.T.: Speckle Reducing Anisotropic Diffusion for 3D Ultrasound Images. Computerized Medical Imaging and Graphics 28, 461–470 (2004)

    Article  Google Scholar 

  9. Abd-Elmoniem, K.Z., Youssef, A.M., Kadah, Y.M.: Real-time Speckle Reduction and Coherence Enhancement in Ultrasound Imaging via Nonlinear Anisotropic Diffusion. IEEE Transactions of Biomedical Engineering 49(9), 997–1014 (2002)

    Article  Google Scholar 

  10. Nguyen, T.D., Kim, S.-H., Kim, N.C.: An Automatic Body ROI Determination for 3D Visualization of a Fetal Ultrasound Volume. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 145–153. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kühne, G.: Motion-based Segmentation and Classification of Video Objects., PhD Dissertation, Mannheim University (2002)

    Google Scholar 

  12. Jardim, S.V., Figueiredo, M.A.: Automatic Contour Estimation in Fetal Ultrasound Images. In: The IEEE International Conference in Image Processing, pp. 1065–1068 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, MJ., Yun, HJ., Kim, MH. (2006). Faster, More Accurate Diffusion Filtering for Fetal Ultrasound Volumes. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867661_47

Download citation

  • DOI: https://doi.org/10.1007/11867661_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44894-5

  • Online ISBN: 978-3-540-44896-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics