Abstract
In this paper we present a tableau calculus for the rational logic R of default reasoning, introduced by Kraus, Lehmann and Magidor. Our calculus is obtained by introducing suitable modalities to interpret conditional assertions, and makes use of labels to represent possible worlds. We also provide a decision procedure for R and study its complexity.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)
Gardenförs, P.: Knowledge in Flux. MIT Press, Cambridge (1988)
Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. Journal of the ACM 48(4), 648–685 (2001)
Friedman, N., Halpern, J.Y., Koller, D.: First-order conditional logic for default reasoning revisited. ACM TOCL 1(2), 175–207 (2000)
Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artificial Intelligence 92(1-2), 259–276 (1997)
Benferhat, S., Saffiotti, A., Smets, P.: Belief functions and default reasoning. Artificial Intelligence 122(1-2), 1–69 (2000)
Weydert, E.: System jlz - rational default reasoning by minimal ranking constructions. Journal of Applied Logic 1(3-4), 273–308 (2003)
Pearl, J.: System z: A natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Proc. of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, pp. 121–135. Morgan Kaufmann Publishers Inc., San Francisco (1990)
Makinson, D.: Bridges from Classical to Nonmonotonic logic. Texts in Computing, vol. 5. King’s College Publications, London (2005)
Makinson, D.: Bridges between classical and nonmonotonic logic. Logic Journal of the IGPL 11(1), 69–96 (2003)
Arieli, O., Avron, A.: General patterns for nonmonotonic reasoning: From basic entailments to plausible relations. Logic Journal of the IGPL 8(2), 119–148 (2000)
Dubois, D., Fargier, H., Perny, P., Prade, H.: Qualitative decision theory: from savages axioms to nonmonotonic reasoning. Journal of the ACM 49(4), 455–495 (2002)
Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach. Art. Int. 148(1-2), 219–260 (2003)
Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artificial Intelligence 55(1), 1–60 (1992)
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux for KLM Preferential and Cumulative Logics. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 666–681. Springer, Heidelberg (2005)
Crocco, G., Lamarre, P.: On the connection between non-monotonic inference systems and conditional logics. In: Proc. of KR 1992, pp. 565–571 (1992)
Boutilier, C.: Conditional logics of normality: a modal approach. Art. Int. 68(1), 87–154 (1994)
Hughes, G., Cresswell, M.: A Companion to Modal Logic. Methuen (1984)
Artosi, A., Governatori, G., Rotolo, A.: Labelled tableaux for non-monotonic reasoning: Cumulative consequence relations. J. of Logic and Computation 12(6), 1027–1060 (2002)
Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculi for preference-based conditional logics. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 81–101. Springer, Heidelberg (2003)
Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Extensions of tableau calculi for preference-based conditional logics. In: Proc. of M4M-4, Informatik-Bericht, vol. 194, pp. 220–234 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L. (2006). Analytic Tableau Calculi for KLM Rational Logic R . In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds) Logics in Artificial Intelligence. JELIA 2006. Lecture Notes in Computer Science(), vol 4160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11853886_17
Download citation
DOI: https://doi.org/10.1007/11853886_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39625-3
Online ISBN: 978-3-540-39627-7
eBook Packages: Computer ScienceComputer Science (R0)