A Hybrid Neural Model in Long-Term Electrical Load Forecasting | SpringerLink
Skip to main content

A Hybrid Neural Model in Long-Term Electrical Load Forecasting

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Abstract

A novel hierarchical hybrid neural model to the problem of long-term electrical load forecasting is proposed in this paper. The neural model is made up of two self-organizing map nets — one on top of the other —, and a single-layer perceptron. It has application into domains which require time series analysis. The model is compared to a multilayer perceptron. Both the hierarchical and the multilayer perceptron models are endowed with time windows in their input layers. They are trained and assessed on load data extracted from a North-American electric utility. The models are required to predict once every week the electric peak-load and mean-load during the next two years. The results are presented and evaluated in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Makridakis, S., Hibon, M.: The M3-Competition: results, conclusions and implications. International Journal of Forecasting 16, 451–476 (2000)

    Article  Google Scholar 

  2. Remus, W., O’Connor, M.: Neural networks for time-series forecasting. In: Armstrong, J.S. (ed.) Principles of Forecasting: a Handbook for Researchers and Practioners, pp. 245–256. Klüwer, Massachusetts (2001)

    Google Scholar 

  3. Kangas, J.: On the Analysis of Pattern Sequences by Self-Organizing Maps. PhD thesis, Laboratory of Computer and Information Science, Helsinki University of Technology, Rakentajanaukio 2 C, SF-02150, Finland (1994)

    Google Scholar 

  4. Chappell, G.J., Taylor, J.G.: The temporal Kohonen map. Neural Networks 6, 441–445 (1993)

    Article  Google Scholar 

  5. Barreto, G.A., Araújo, A.F.R.: Time in self-organizing maps: An overview of models. International Journal of Computer Research, Special Issue on Neural Networks: Past, Present and Future 10, 139–179 (2001)

    Google Scholar 

  6. Kremer, S.C.: Spatio-temporal connectionist networks: A taxonomy and review. Neural Computation 13, 249–306 (2001)

    Article  MATH  Google Scholar 

  7. Barreto, G.A., Araújo, A.F.R., Kremer, S.C.: A taxonomy for spatiotemporal connectionist networks revisited: The unsupervised case. Neural Computation 15, 1255–1320 (2003)

    Article  MATH  Google Scholar 

  8. Zhang, B., Dong, Z.: An adaptive neural-wavelet model for short term load forecasting. Electric Power Systems Research 59, 121–129 (2001)

    Article  Google Scholar 

  9. Kim, C., Yu, I., Song, Y.H.: Kohonen neural network and wavelet transform based approach to short-term load forecasting. Electric Power Systems Research 63, 169–176 (2002)

    Article  Google Scholar 

  10. Marin, F., Garcia-Lagos, F., Joya, G., Sandoval, F.: Global model for short-term load forecasting using artificial neural networks. IEE Proceedings Generation, Transmission & Distribution 149, 121–125 (2002)

    Article  Google Scholar 

  11. Mori, H., Itagaki, T.: A fuzzy inference neural network based method for shortterm load forecasting. In: Proceedings of the International Joint Conference on Neural Networks. IEEE, Los Alamitos (2004)

    Google Scholar 

  12. Reis, A.J.R., da Silva, A.P.A.: Feature extraction via multiresolution analysis for short-term load forecasting. IEEE Transactions on Power Systems 20, 189–198 (2005)

    Article  Google Scholar 

  13. Khotanzad, A., Afkhami-Rohani, R., Maratukulam, D.: ANNSTLF – artificial neural network short-term load forecaster – generation three. IEEE Trans. on Power Systems 13, 1413–1422 (1998)

    Article  Google Scholar 

  14. Hippert, H., Pedreira, C., Souza, R.: Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. on Power Systems 16, 44–55 (2001)

    Article  Google Scholar 

  15. Kermanshahi, B.: Recurrent neural network for forecasting next 10 years load of nine Japanese utilities. Neurocomputing 23, 125–133 (1998)

    Article  Google Scholar 

  16. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  17. Galván, I.M., Isasi, P.: Multi-step learning rule for recurrent neural models: An application to time series forecasting. Neural Processing Letters 13, 115–133 (2001)

    Article  MATH  Google Scholar 

  18. El-Sharkawi, M.A.: Internet web page (2002), http://www.ee.washington.edu/class/559/2002spr/

  19. Lo, Z., Bavarian, B.: Improved rate of convergence in Kohonen neural network. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2, pp. 201–206 (1991)

    Google Scholar 

  20. Lo, Z., Fujita, M., Bavarian, B.: Analysis of neighborhood interaction in Kohonen neural networks. In: Proceedings of the Fifth International Parallel Processing Symposium, pp. 246–249 (1991)

    Google Scholar 

  21. Widrow, G., Hoff, M.E.: Adaptive switching circuits. Institute of Radio Engineers, Western Electronic Show and Convention, Convention Record, Part 4 (1960)

    Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review 88, 135–170 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carpinteiro, O.A.S., Lima, I., Leme, R.C., de Souza, A.C.Z., Moreira, E.M., Pinheiro, C.A.M. (2006). A Hybrid Neural Model in Long-Term Electrical Load Forecasting. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_75

Download citation

  • DOI: https://doi.org/10.1007/11840930_75

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics