MaxMinOver Regression: A Simple Incremental Approach for Support Vector Function Approximation | SpringerLink
Skip to main content

MaxMinOver Regression: A Simple Incremental Approach for Support Vector Function Approximation

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

  • 3364 Accesses

Abstract

The well-known MinOver algorithm is a simple modification of the perceptron algorithm and provides the maximum margin classifier without a bias in linearly separable two class classification problems. In [1] and [2] we presented DoubleMinOver and MaxMinOver as extensions of MinOver which provide the maximal margin solution in the primal and the Support Vector solution in the dual formulation by dememorising non Support Vectors. These two approaches were augmented to soft margins based on the ν-SVM and the C2-SVM. We extended the last approach to SoftDoubleMaxMinOver [3] and finally this method leads to a Support Vector regression algorithm which is as efficient and its implementation as simple as the C2-SoftDoubleMaxMinOver classification algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Martinetz, T., Labusch, K., Schneegass, D.: Softdoubleminover: A simple procedure for maximum margin classification. In: Proc. of the International Conference on Artificial Neural Networks, pp. 301–306 (2005)

    Google Scholar 

  2. Martinetz, T.: Maxminover: A simple incremental learning procedure for support vector classification. In: Proc. of the International Joint Conference on Neural Networks, pp. 2065–2070. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  3. Schneegass, D., Martinetz, T., Clausohm, M.: Onlinedoublemaxminover: A simple approximate time and information efficient online support vector classification method. In: Proc. of the European Symposium on Artificial Neural Networks (2006) (in preparation)

    Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  5. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  6. LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., Denker, J., Drucker, H., Guyon, I., Muller, U., Sackinger, E., Simard, P., Vapnik, V.: Comparison of learning algorithms for handwritten digit recognition. In: Int.Conf.on Artificial Neural Networks, pp. 53–60 (1995)

    Google Scholar 

  7. Osuna, E., Freund, R., Girosi, F.: Training support vector machines:an application to face detection. In: CVPR 1997, pp. 130–136 (1997)

    Google Scholar 

  8. Schölkopf, B.: Support vector learning (1997)

    Google Scholar 

  9. Friess, T., Cristianini, N., Campbell, C.: The kernel adatron algorithm: a fast and simple learning procedure for support vector machine. In: Proc. 15th International Conference on Machine Learning (1998)

    Google Scholar 

  10. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Advances in Kernel Methods - Support Vector Learning, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: A fast iterative nearest point algorithm for support vector machine classifier design. IEEE-NN 11(1), 124–136 (2000)

    Google Scholar 

  12. Li, Y., Long, P.: The relaxed online maximum margin algorithm. Machine Learning 46(1-3), 361–387 (2002)

    Article  MATH  Google Scholar 

  13. Cristianini, N., Shawe-Taylor, J.: Support Vector Machines And Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  14. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, Inc., New York (1998)

    MATH  Google Scholar 

  15. Martinetz, T.: Minover revisited for incremental support-vector-classification. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 187–194. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schneegaß, D., Labusch, K., Martinetz, T. (2006). MaxMinOver Regression: A Simple Incremental Approach for Support Vector Function Approximation. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_16

Download citation

  • DOI: https://doi.org/10.1007/11840817_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics