Parallel Homotopy Algorithms to Solve Polynomial Systems | SpringerLink
Skip to main content

Parallel Homotopy Algorithms to Solve Polynomial Systems

  • Conference paper
Mathematical Software - ICMS 2006 (ICMS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4151))

Included in the following conference series:

Abstract

Homotopy continuation methods to compute numerical approximations to all isolated solutions of a polynomial system are known as “embarrassingly parallel”, i.e.: because of their low communication overhead, these methods scale very well for a large number of processors. Because so many important problems remain unsolved mainly due to their intrinsic computational complexity, it would be embarrassing not to develop parallel implementations of polynomial homotopy continuation methods. This paper concerns the development of “parallel PHCpack”, a project which started a couple of years ago in collaboration with Yusong Wang, and which currently continues with Anton Leykin (parallel irreducible decomposition) and Yan Zhuang (parallel polyhedral homotopies). We report on our efforts to make PHCpack ready to solve large polynomial systems which arise in applications.

2000 Mathematics Subject Classification. Primary 65H10. Secondary 14Q99, 68W30.

This material is based upon work supported by the National Science Foundation under Grant No. 0134611 and Grant No. 0410036. This work was partially supported by the National Center for Supercomputing Applications under DMS060008N and utilized the IBM pSeries 690 system copper. Date: 22 June 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allison, D.C.S., Chakraborty, A., Watson, L.T.: Granularity issues for solving polynomial systems via globally convergent algorithms on a hypercube. J. of Supercomputing 3, 5–20 (1989)

    Article  Google Scholar 

  2. Bernshteǐn, D.N.: The number of roots of a system of equations. Functional Anal. Appl., 9(3), 183–185 (1975); Translated from Funktsional. Anal. i Prilozhen., 9(3), 1–4 (1975)

    Google Scholar 

  3. Boege, W., Gebauer, R., Kredel, H.: Some examples for solving systems of algebraic equations by calculating Groebner bases. J. Symbolic Computation 2, 83–98 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chakraborty, A., Allison, D.C.S., Ribbens, C.J., Watson, L.T.: Note on unit tangent vector computation for homotopy curve tracking on a hypercube. Parallel Computing 17(12), 1385–1395 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chakraborty, A., Allison, D.C.S., Ribbens, C.J., Watson, L.T.: The parallel complexity of embedding algorithms for the solution of systems of nonlinear equations. IEEE Transactions on Parallel and Distributed Systems 4(4), 458–465 (1993)

    Article  Google Scholar 

  6. Gao, T., Li, T.Y., Wu, M.: Algorithm 846: MixedVol: A software package for mixed volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gunji, T., Kim, S., Fujisawa, K., Kojima, M.: PHoMpara – parallel implementation of the Polyhedral Homotopy continuation Method for polynomial systems. Research report b-419, Tokyo Institute of Technology (2005) available via: http://www.is.titech.ac.jp/~kojima/sdp.html

    Article  MATH  MathSciNet  Google Scholar 

  8. Gunji, T., Kim, S., Kojima, M., Takeda, A., Fujisawa, K., Mizutani, T.: PHoM – a polyhedral homotopy continuation method for polynomial systems. Computing 73(4), 55–77 (2004)

    MathSciNet  Google Scholar 

  9. Harimoto, S., Watson, L.T.: The granularity of homotopy algorithms for polynomial systems of equations. In: Rodrigue, G. (ed.) Parallel processing for scientific computing, pp. 115–120. SIAM, Philadelphia (1989)

    Google Scholar 

  10. Huber, B., Sottile, F., Sturmfels, B.: Numerical Schubert calculus. J. Symbolic Computation 26(6), 767–788 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comp. 64(212), 1541–1555 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huber, B., Verschelde, J.: Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control. SIAM J. Control Optim. 38(4), 1265–1287 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Katsura, S.: Users posing problems to PoSSO. In: Gonzelez-Vega, L., Recio, T. (eds.) The PoSSO Newsletter, vol. 2 (July 1994)

    Google Scholar 

  14. Leykin, A., Verschelde, J.: Decomposing solution sets of polynomial systems: a new parallel monodromy breakup algorithm. The International Journal of Computational Science and Engineering (accepted for publication)

    Google Scholar 

  15. Leykin, A., Verschelde, J.: Interfacing with the numerical homotopy algorithms in phcpack. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 354–360. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Leykin, A., Verschelde, J.: Factoring solution sets of polynomial systems in parallel. In: Skeie, T., Yang, C.-S. (eds.) Proceedings of the 2005 International Conference on Parallel Processing Workshops, June 14-17, 2005. High Performance Scientific and Engineering Computing, pp. 173–180. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  17. Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation methods. In: Cucker, F. (ed.) Handbook of Numerical Analysis. Foundations of Computational Mathematics, vol. XI, pp. 209–304. North-Holland, Amsterdam (2003)

    Google Scholar 

  18. Li, T.Y., Wang, X., Wu, M.: Numerical schubert calculus by the pieri homotopy algorithm. SIAM J. Numer. Anal. 40(2), 578–600 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Morgan, A., Sommese, A.: A homotopy for solving general polynomial systems that respects m-homogeneous structures. Appl. Math. Comput. 24(2), 101–113 (1987)

    Article  MathSciNet  Google Scholar 

  20. Morgan, A.P., Watson, L.T.: A globally convergent parallel algorithm for zeros of polynomial systems. Nonlinear Analysis 13(11), 1339–1350 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pelz, W., Watson, L.T.: Message length effects for solving polynomial systems on a hypercube. Parallel Computing 10(2), 161–176 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. Samet, H.: The quadtree and related hierarchical data structures. ACM Computing Surveys 16(2) (1984)

    Google Scholar 

  23. Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6), 2022–2046 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sommese, A.J., Verschelde, J., Wampler, C.W.: Using monodromy to decompose solution sets of polynomial systems into irreducible components. In: Ciliberto, C., Hirzebruch, F., Miranda, R., Teicher, M. (eds.) Application of Algebraic Geometry to Coding Theory, Physics and Computation. Proceedings of a NATO Conference, Eilat, Israel, February 25 - March 1, 2001, pp. 297–315. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  25. Sommese, A.J., Verschelde, J., Wampler, C.W.: Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40(6), 2026–2046 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sommese, A.J., Verschelde, J., Wampler, C.W.: Introduction to numerical algebraic geometry. In: Dickenstein, A., Emiris, I.Z. (eds.) Solving Polynomial Equations. Foundations, Algorithms and Applications. Algorithms and Computation in Mathematics, vol. 14, pp. 301–337. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Sommese, A.J., Wampler, C.W.: The Numerical solution of systems of polynomials arising in engineering and science. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  28. Su, H.-J.: Computer-Aided Constrained Robot Design Using Mechanism Synthesis Theory. PhD thesis, University of California, Irvine (2004)

    Google Scholar 

  29. Su, H.-J., McCarthy, J.M.: Kinematic synthesis of RPS serial chains. In: the Proceedings of the ASME Design Engineering Technical Conferences (CDROM), Chicago, IL, September 2-6 (2003)

    Google Scholar 

  30. Su, H.-J., McCarthy, J.M., Sosonkina, M., Watson, L.T.: Algorithm 8xx: POLSYS_GLP: A parallel general linear product homotopy code for solving polynomial systems of equations. ACM Trans. Math. Softw. (to appear)

    Google Scholar 

  31. Su, H.-J., McCarthy, J.M., Watson, L.T.: Generalized linear product homotopy algorithms and the computation of reachable surfaces. ASME Journal of Information and Computer Sciences in Engineering 4(3), 226–234 (2004)

    Article  Google Scholar 

  32. Su, H.-J., Wampler, C.W., McCarthy, J.M.: Geometric design of cylindric PRS serial chains. ASME Journal of Mechanical Design 126(2), 269–277 (2004)

    Article  Google Scholar 

  33. Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999), Software available at: http://www.math.uic.edu/~jan

    Article  MATH  Google Scholar 

  34. Verschelde, J., Cools, R.: Symbolic homotopy construction. Applicable Algebra in Engineering, Communication and Computing 4(3), 169–183 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Verschelde, J., Verlinden, P., Cools, R.: Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31(3), 915–930 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Verschelde, J., Wang, Y.: Computing feedback laws for linear systems with a parallel Pieri homotopy. In: Yang, Y. (ed.) Proceedings of the 2004 International Conference on Parallel Processing Workshops, Montreal, Quebec, Canada, August 15-18, 2004. High Performance Scientific and Engineering Computing, pp. 222–229. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  37. Verschelde, J., Zhuang, Y.: Parallel implementation of the polyhedral homotopy method. In: Proceedings of The 8th Workshop on High Performance Scientific and Engineering Computing (HPSEC 2006), Columbus, Ohio, USA, August 18 (2006) (to appear)

    Google Scholar 

  38. Wampler, C.W., Morgan, A.P., Sommese, A.J.: Numerical continuation methods for solving polynomial systems arising in kinematics. ASME J. of Mechanical Design 112(1), 59–68 (1990)

    Article  Google Scholar 

  39. Watson, L.T., Billups, S.C., Morgan, A.P.: Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms. ACM Trans. Math. Softw. 13(3), 281–310 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wise, S.M., Sommese, A.J., Watson, L.T.: Algorithm 801: POLSYS_PLP: a partitioned linear product homotopy code for solving polynomial systems of equations. ACM Trans. Math. Softw. 26(1), 176–200 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leykin, A., Verschelde, J., Zhuang, Y. (2006). Parallel Homotopy Algorithms to Solve Polynomial Systems. In: Iglesias, A., Takayama, N. (eds) Mathematical Software - ICMS 2006. ICMS 2006. Lecture Notes in Computer Science, vol 4151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11832225_22

Download citation

  • DOI: https://doi.org/10.1007/11832225_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38084-9

  • Online ISBN: 978-3-540-38086-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics