Abstract
Homotopy continuation methods to compute numerical approximations to all isolated solutions of a polynomial system are known as “embarrassingly parallel”, i.e.: because of their low communication overhead, these methods scale very well for a large number of processors. Because so many important problems remain unsolved mainly due to their intrinsic computational complexity, it would be embarrassing not to develop parallel implementations of polynomial homotopy continuation methods. This paper concerns the development of “parallel PHCpack”, a project which started a couple of years ago in collaboration with Yusong Wang, and which currently continues with Anton Leykin (parallel irreducible decomposition) and Yan Zhuang (parallel polyhedral homotopies). We report on our efforts to make PHCpack ready to solve large polynomial systems which arise in applications.
2000 Mathematics Subject Classification. Primary 65H10. Secondary 14Q99, 68W30.
This material is based upon work supported by the National Science Foundation under Grant No. 0134611 and Grant No. 0410036. This work was partially supported by the National Center for Supercomputing Applications under DMS060008N and utilized the IBM pSeries 690 system copper. Date: 22 June 2006.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allison, D.C.S., Chakraborty, A., Watson, L.T.: Granularity issues for solving polynomial systems via globally convergent algorithms on a hypercube. J. of Supercomputing 3, 5–20 (1989)
Bernshteǐn, D.N.: The number of roots of a system of equations. Functional Anal. Appl., 9(3), 183–185 (1975); Translated from Funktsional. Anal. i Prilozhen., 9(3), 1–4 (1975)
Boege, W., Gebauer, R., Kredel, H.: Some examples for solving systems of algebraic equations by calculating Groebner bases. J. Symbolic Computation 2, 83–98 (1986)
Chakraborty, A., Allison, D.C.S., Ribbens, C.J., Watson, L.T.: Note on unit tangent vector computation for homotopy curve tracking on a hypercube. Parallel Computing 17(12), 1385–1395 (1991)
Chakraborty, A., Allison, D.C.S., Ribbens, C.J., Watson, L.T.: The parallel complexity of embedding algorithms for the solution of systems of nonlinear equations. IEEE Transactions on Parallel and Distributed Systems 4(4), 458–465 (1993)
Gao, T., Li, T.Y., Wu, M.: Algorithm 846: MixedVol: A software package for mixed volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)
Gunji, T., Kim, S., Fujisawa, K., Kojima, M.: PHoMpara – parallel implementation of the Polyhedral Homotopy continuation Method for polynomial systems. Research report b-419, Tokyo Institute of Technology (2005) available via: http://www.is.titech.ac.jp/~kojima/sdp.html
Gunji, T., Kim, S., Kojima, M., Takeda, A., Fujisawa, K., Mizutani, T.: PHoM – a polyhedral homotopy continuation method for polynomial systems. Computing 73(4), 55–77 (2004)
Harimoto, S., Watson, L.T.: The granularity of homotopy algorithms for polynomial systems of equations. In: Rodrigue, G. (ed.) Parallel processing for scientific computing, pp. 115–120. SIAM, Philadelphia (1989)
Huber, B., Sottile, F., Sturmfels, B.: Numerical Schubert calculus. J. Symbolic Computation 26(6), 767–788 (1998)
Huber, B., Sturmfels, B.: A polyhedral method for solving sparse polynomial systems. Math. Comp. 64(212), 1541–1555 (1995)
Huber, B., Verschelde, J.: Pieri homotopies for problems in enumerative geometry applied to pole placement in linear systems control. SIAM J. Control Optim. 38(4), 1265–1287 (2000)
Katsura, S.: Users posing problems to PoSSO. In: Gonzelez-Vega, L., Recio, T. (eds.) The PoSSO Newsletter, vol. 2 (July 1994)
Leykin, A., Verschelde, J.: Decomposing solution sets of polynomial systems: a new parallel monodromy breakup algorithm. The International Journal of Computational Science and Engineering (accepted for publication)
Leykin, A., Verschelde, J.: Interfacing with the numerical homotopy algorithms in phcpack. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 354–360. Springer, Heidelberg (2006)
Leykin, A., Verschelde, J.: Factoring solution sets of polynomial systems in parallel. In: Skeie, T., Yang, C.-S. (eds.) Proceedings of the 2005 International Conference on Parallel Processing Workshops, June 14-17, 2005. High Performance Scientific and Engineering Computing, pp. 173–180. IEEE Computer Society Press, Los Alamitos (2005)
Li, T.Y.: Numerical solution of polynomial systems by homotopy continuation methods. In: Cucker, F. (ed.) Handbook of Numerical Analysis. Foundations of Computational Mathematics, vol. XI, pp. 209–304. North-Holland, Amsterdam (2003)
Li, T.Y., Wang, X., Wu, M.: Numerical schubert calculus by the pieri homotopy algorithm. SIAM J. Numer. Anal. 40(2), 578–600 (2002)
Morgan, A., Sommese, A.: A homotopy for solving general polynomial systems that respects m-homogeneous structures. Appl. Math. Comput. 24(2), 101–113 (1987)
Morgan, A.P., Watson, L.T.: A globally convergent parallel algorithm for zeros of polynomial systems. Nonlinear Analysis 13(11), 1339–1350 (1989)
Pelz, W., Watson, L.T.: Message length effects for solving polynomial systems on a hypercube. Parallel Computing 10(2), 161–176 (1989)
Samet, H.: The quadtree and related hierarchical data structures. ACM Computing Surveys 16(2) (1984)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6), 2022–2046 (2001)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Using monodromy to decompose solution sets of polynomial systems into irreducible components. In: Ciliberto, C., Hirzebruch, F., Miranda, R., Teicher, M. (eds.) Application of Algebraic Geometry to Coding Theory, Physics and Computation. Proceedings of a NATO Conference, Eilat, Israel, February 25 - March 1, 2001, pp. 297–315. Kluwer Academic Publishers, Dordrecht (2001)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Symmetric functions applied to decomposing solution sets of polynomial systems. SIAM J. Numer. Anal. 40(6), 2026–2046 (2002)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Introduction to numerical algebraic geometry. In: Dickenstein, A., Emiris, I.Z. (eds.) Solving Polynomial Equations. Foundations, Algorithms and Applications. Algorithms and Computation in Mathematics, vol. 14, pp. 301–337. Springer, Heidelberg (2005)
Sommese, A.J., Wampler, C.W.: The Numerical solution of systems of polynomials arising in engineering and science. World Scientific, Singapore (2005)
Su, H.-J.: Computer-Aided Constrained Robot Design Using Mechanism Synthesis Theory. PhD thesis, University of California, Irvine (2004)
Su, H.-J., McCarthy, J.M.: Kinematic synthesis of RPS serial chains. In: the Proceedings of the ASME Design Engineering Technical Conferences (CDROM), Chicago, IL, September 2-6 (2003)
Su, H.-J., McCarthy, J.M., Sosonkina, M., Watson, L.T.: Algorithm 8xx: POLSYS_GLP: A parallel general linear product homotopy code for solving polynomial systems of equations. ACM Trans. Math. Softw. (to appear)
Su, H.-J., McCarthy, J.M., Watson, L.T.: Generalized linear product homotopy algorithms and the computation of reachable surfaces. ASME Journal of Information and Computer Sciences in Engineering 4(3), 226–234 (2004)
Su, H.-J., Wampler, C.W., McCarthy, J.M.: Geometric design of cylindric PRS serial chains. ASME Journal of Mechanical Design 126(2), 269–277 (2004)
Verschelde, J.: Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2), 251–276 (1999), Software available at: http://www.math.uic.edu/~jan
Verschelde, J., Cools, R.: Symbolic homotopy construction. Applicable Algebra in Engineering, Communication and Computing 4(3), 169–183 (1993)
Verschelde, J., Verlinden, P., Cools, R.: Homotopies exploiting Newton polytopes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31(3), 915–930 (1994)
Verschelde, J., Wang, Y.: Computing feedback laws for linear systems with a parallel Pieri homotopy. In: Yang, Y. (ed.) Proceedings of the 2004 International Conference on Parallel Processing Workshops, Montreal, Quebec, Canada, August 15-18, 2004. High Performance Scientific and Engineering Computing, pp. 222–229. IEEE Computer Society Press, Los Alamitos (2004)
Verschelde, J., Zhuang, Y.: Parallel implementation of the polyhedral homotopy method. In: Proceedings of The 8th Workshop on High Performance Scientific and Engineering Computing (HPSEC 2006), Columbus, Ohio, USA, August 18 (2006) (to appear)
Wampler, C.W., Morgan, A.P., Sommese, A.J.: Numerical continuation methods for solving polynomial systems arising in kinematics. ASME J. of Mechanical Design 112(1), 59–68 (1990)
Watson, L.T., Billups, S.C., Morgan, A.P.: Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms. ACM Trans. Math. Softw. 13(3), 281–310 (1987)
Wise, S.M., Sommese, A.J., Watson, L.T.: Algorithm 801: POLSYS_PLP: a partitioned linear product homotopy code for solving polynomial systems of equations. ACM Trans. Math. Softw. 26(1), 176–200 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leykin, A., Verschelde, J., Zhuang, Y. (2006). Parallel Homotopy Algorithms to Solve Polynomial Systems. In: Iglesias, A., Takayama, N. (eds) Mathematical Software - ICMS 2006. ICMS 2006. Lecture Notes in Computer Science, vol 4151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11832225_22
Download citation
DOI: https://doi.org/10.1007/11832225_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38084-9
Online ISBN: 978-3-540-38086-3
eBook Packages: Computer ScienceComputer Science (R0)