Abstract
The increasing number of documents returned by search engines for typical requests makes it necessary to look for new methods of representation of the search results.
In this paper, we discuss the possibility to exploit incremental, navigational maps based both on page content, hyperlinks connecting similar pages and ranking algorithms (such as HITS, SALSA, PHITS and PageRank) in order to build visual recommender system. Such system would have an immediate impact on business information management (e.g. CRM and marketing, consulting, education and training) and is a major step on the way to information personalization.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aggarwal, C.C., Al-Garawi, F., Yu, P.S.: Intelligent crawling on the World Wide Web with arbitrary predicates. In: Proc. 10th Int. World Wide Web Conference, pp. 96–105 (2001)
Breese, J.S., Heckerman, D., Kadie, D.C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)
Callan, J., et al.: Personalisation and recommender systems in digital libraries, Joint NSF-EU DELOS Working Group Report (May 2003), http://www.dli2.nsf.gov/internationalprojects/working_group_reports/personalisation.html
Cayzer, S., Aickelin, U.: A Recommender System based on Idiotypic Artificial Immune Networks. J. of Mathematical Modelling and Algorithms 4(2), 181–198 (2005)
Ciesielski, K., et al.: Adaptive document maps. In: Proc. IIPWM 2006. Springer, Heidelberg (2006)
Cohn, D., Chang, H.: Learning to probabilistically identify authoritative documents. In: Proceedings of the 17th International Conference on Machine Learning (2000)
Berry, M.W.: Large scale singular value decompositions. Int. Journal of Supercomputer Applications 6(1), 13–49 (1992)
Decker, R.: Identifying patterns in buying behavior by means of growing neural gas network. In: Operations Research Conference, Heidelberg (2003)
Dittenbach, M., Rauber, A., Merkl, D.: Discovering hierarchical structure in data using the growing hierarchical Self-Organizing Map. Neurocomputing 48(1-4), 199–216 (2002)
Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, pp. 625–632. MIT Press, Cambridge (1995)
Fritzke, B.: A self-organizing network that can follow non-stationary distributions. In: Proc. of the Int. Conference on Artificial Neural Networks 1997, pp. 613–618 (1997)
Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Communication of the ACM 35, 61–70 (1992)
Hoffmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the 15th Conference on Uncertainty in AI (1999)
Hung, C., Wermter, S.: A constructive and hierarchical self-organising model in a non-stationary environment. In: Int. Joint Conference in Neural Networks (2005)
Jameson, A.: More than the sum of its Mmmbers: Challenges for group recommender. In: Proc. of the Int. Working Conference on Advanced Visual Interfaces, Gallipoli, Italy (2004), http://dfki.de/~jameson/pdf/avi04.jameson-long.pdf
Kłopotek, M.: A new Bayesian tree learning method with reduced time and space complexity. Fundamenta Informaticae 49(4), 349–367 (2002)
Kłopotek, M., Dramiński, M., Ciesielski, K., Kujawiak, M., Wierzchoń, S.T.: Mining document maps. In: Gori, M., Celi, M., Nanni, M. (eds.) Proceedings of Statistical Approaches to Web Mining Workshop (SAWM) at PKDD 2004, Pisa, pp. 87–98 (2004)
Kłopotek, M., Wierzchoń, S.T., Ciesielski, K., Dramiński, M., Kujawiak, M.: Coexistence of fuzzy and crisp concepts in document maps. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS (LNAI), vol. 3697, pp. 859–864. Springer, Heidelberg (2005)
Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)
Livesay, B.C.K., Lund, K.: Explorations in context space: Words, sentences, discourse. Discourse Processes 25(2-3), 211–257 (1998)
Sarwar, G., Karypis, J., Konstan, J.: Riedl: Item-based Collaborative Filtering Recommendation Algorithms. In: WWW10, Hong Kong, May 1-5 (2001)
Schafer, J.B., Konstan, J., Riedl, J.: Electronic Commerce Recommender Applications. Journal of Data Mining and Knowledge Discovery 5(1-2), 115–152 (2001)
Shardanand, U., Maes, P.: Social information filtering: algorithms for automating ”word of mouth”. In: ACM Conference Proceedings on Human Factors in Computing Systems, Denver, CO, May 7-11, pp. 210–217 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kłopotek, M.A., Wierzchoń, S.T., Ciesielski, K., Dramiński, M., Czerski, D. (2006). Map-Based Recommendation of Hyperlinked Document Collections. In: Bauknecht, K., Pröll, B., Werthner, H. (eds) E-Commerce and Web Technologies. EC-Web 2006. Lecture Notes in Computer Science, vol 4082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823865_1
Download citation
DOI: https://doi.org/10.1007/11823865_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37743-6
Online ISBN: 978-3-540-37745-0
eBook Packages: Computer ScienceComputer Science (R0)