Map-Based Recommendation of Hyperlinked Document Collections | SpringerLink
Skip to main content

Map-Based Recommendation of Hyperlinked Document Collections

  • Conference paper
E-Commerce and Web Technologies (EC-Web 2006)

Abstract

The increasing number of documents returned by search engines for typical requests makes it necessary to look for new methods of representation of the search results.

In this paper, we discuss the possibility to exploit incremental, navigational maps based both on page content, hyperlinks connecting similar pages and ranking algorithms (such as HITS, SALSA, PHITS and PageRank) in order to build visual recommender system. Such system would have an immediate impact on business information management (e.g. CRM and marketing, consulting, education and training) and is a major step on the way to information personalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C.C., Al-Garawi, F., Yu, P.S.: Intelligent crawling on the World Wide Web with arbitrary predicates. In: Proc. 10th Int. World Wide Web Conference, pp. 96–105 (2001)

    Google Scholar 

  2. Breese, J.S., Heckerman, D., Kadie, D.C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)

    Google Scholar 

  3. Callan, J., et al.: Personalisation and recommender systems in digital libraries, Joint NSF-EU DELOS Working Group Report (May 2003), http://www.dli2.nsf.gov/internationalprojects/working_group_reports/personalisation.html

  4. Cayzer, S., Aickelin, U.: A Recommender System based on Idiotypic Artificial Immune Networks. J. of Mathematical Modelling and Algorithms 4(2), 181–198 (2005)

    Article  MATH  Google Scholar 

  5. Ciesielski, K., et al.: Adaptive document maps. In: Proc. IIPWM 2006. Springer, Heidelberg (2006)

    Google Scholar 

  6. Cohn, D., Chang, H.: Learning to probabilistically identify authoritative documents. In: Proceedings of the 17th International Conference on Machine Learning (2000)

    Google Scholar 

  7. Berry, M.W.: Large scale singular value decompositions. Int. Journal of Supercomputer Applications 6(1), 13–49 (1992)

    Google Scholar 

  8. Decker, R.: Identifying patterns in buying behavior by means of growing neural gas network. In: Operations Research Conference, Heidelberg (2003)

    Google Scholar 

  9. Dittenbach, M., Rauber, A., Merkl, D.: Discovering hierarchical structure in data using the growing hierarchical Self-Organizing Map. Neurocomputing 48(1-4), 199–216 (2002)

    Article  MATH  Google Scholar 

  10. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  11. Fritzke, B.: A self-organizing network that can follow non-stationary distributions. In: Proc. of the Int. Conference on Artificial Neural Networks 1997, pp. 613–618 (1997)

    Google Scholar 

  12. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an information tapestry. Communication of the ACM 35, 61–70 (1992)

    Article  Google Scholar 

  13. Hoffmann, T.: Probabilistic latent semantic analysis. In: Proceedings of the 15th Conference on Uncertainty in AI (1999)

    Google Scholar 

  14. Hung, C., Wermter, S.: A constructive and hierarchical self-organising model in a non-stationary environment. In: Int. Joint Conference in Neural Networks (2005)

    Google Scholar 

  15. Jameson, A.: More than the sum of its Mmmbers: Challenges for group recommender. In: Proc. of the Int. Working Conference on Advanced Visual Interfaces, Gallipoli, Italy (2004), http://dfki.de/~jameson/pdf/avi04.jameson-long.pdf

  16. Kłopotek, M.: A new Bayesian tree learning method with reduced time and space complexity. Fundamenta Informaticae 49(4), 349–367 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Kłopotek, M., Dramiński, M., Ciesielski, K., Kujawiak, M., Wierzchoń, S.T.: Mining document maps. In: Gori, M., Celi, M., Nanni, M. (eds.) Proceedings of Statistical Approaches to Web Mining Workshop (SAWM) at PKDD 2004, Pisa, pp. 87–98 (2004)

    Google Scholar 

  18. Kłopotek, M., Wierzchoń, S.T., Ciesielski, K., Dramiński, M., Kujawiak, M.: Coexistence of fuzzy and crisp concepts in document maps. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS (LNAI), vol. 3697, pp. 859–864. Springer, Heidelberg (2005)

    Google Scholar 

  19. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  20. Livesay, B.C.K., Lund, K.: Explorations in context space: Words, sentences, discourse. Discourse Processes 25(2-3), 211–257 (1998)

    Google Scholar 

  21. Sarwar, G., Karypis, J., Konstan, J.: Riedl: Item-based Collaborative Filtering Recommendation Algorithms. In: WWW10, Hong Kong, May 1-5 (2001)

    Google Scholar 

  22. Schafer, J.B., Konstan, J., Riedl, J.: Electronic Commerce Recommender Applications. Journal of Data Mining and Knowledge Discovery 5(1-2), 115–152 (2001)

    Article  MATH  Google Scholar 

  23. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating ”word of mouth”. In: ACM Conference Proceedings on Human Factors in Computing Systems, Denver, CO, May 7-11, pp. 210–217 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kłopotek, M.A., Wierzchoń, S.T., Ciesielski, K., Dramiński, M., Czerski, D. (2006). Map-Based Recommendation of Hyperlinked Document Collections. In: Bauknecht, K., Pröll, B., Werthner, H. (eds) E-Commerce and Web Technologies. EC-Web 2006. Lecture Notes in Computer Science, vol 4082. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823865_1

Download citation

  • DOI: https://doi.org/10.1007/11823865_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37743-6

  • Online ISBN: 978-3-540-37745-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics