Some Remarks on Definability of Process Graphs | SpringerLink
Skip to main content

Some Remarks on Definability of Process Graphs

  • Conference paper
CONCUR 2006 – Concurrency Theory (CONCUR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4137))

Included in the following conference series:

  • 606 Accesses

Abstract

We propose the notions of “density” and “connectivity” of infinite process graphs and investigate them in the context of the well-known process algebras BPA and BPP. For a process graph G, the density function in a state s maps a natural number n to the number of states of G with distance less or equal to n from s. The connectivity of a process graph G in a state s is a measure for how many different ways “of going from s to infinity” exist in G.

For BPA-graphs we discuss some tentative findings about the notions density and connectivity, and indicate how they can be used to establish some non-definability results, stating that certain process graphs are not BPA-graphs, and stronger, not even BPA-definable. For BPP-graphs, which are associated with processes from the class of Basic Parallel Processes (BPP), we prove that their densities are at most polynomial. And we use this fact for showing that the paradigmatic process Queue is not expressible in BPP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeten, J.C.M., Bergstra, J.A.: Global renaming operators in concrete process algebra. Information and Computation, 205–245 (1988)

    Google Scholar 

  2. Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Decidability of bisimulation equivalence for process generating context-free languages. Journal of the ACM 40(3), 653–682 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baeten, J.C.M., Weijland, W.P.: Process Algebra. In: Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  4. Bergstra, J.A., Klop, J.W.: The algebra of recursively defined processes and the algebra of regular processes. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 82–95. Springer, Heidelberg (1984)

    Google Scholar 

  5. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1–3), 109–137 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergstra, J.A., Klop, J.W.: Process algebra: specification and verification in bisimulation semantics. In: Hazewinkel, M., Lenstra, J.K., Meertens, L.G.L.T. (eds.) CWI Monograph 4, Proceedings of the CWI Symposium Mathematics and Computer Science II, pp. 61–94. North-Holland, Amsterdam (1986)

    Google Scholar 

  7. Bergstra, J.A., Tiuryn, J.: Process algebra semantics for queues. Fundamenta Informaticae X, 213–224 (1987)

    MathSciNet  Google Scholar 

  8. Burkart, O., Caucal, D., Steffen, B.: Bisimulation collapse and the process taxonomy. In: Proceedings of CONCUR 1996 (1996)

    Google Scholar 

  9. Caucal, D., Montfort, R.: On the transition graphs of automata and grammars. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 61–86. Springer, Heidelberg (1991)

    Google Scholar 

  10. Caucal, D.: Graphes canoniques de graphes algébriques. Theoret. Inform. and Appl. 24(4), 339–352 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer Science (1992)

    Google Scholar 

  12. Christensen, S.: Decidability and Decompostion in Process Algebras. PhD thesis, University of Edinburgh (1993)

    Google Scholar 

  13. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation equivalence is decidable for basic parallel processes. In: CONCUR, pp. 143–157 (1993)

    Google Scholar 

  14. Freudenthal, H.: Über die Enden topologischer Räume und Gruppen. Mathematische Zeitschrift 33, 692–713 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  15. Groote, J.F., van Ham, F.J.J.: Interactive visualization of large state spaces. International Journal on Software Tools for Technology Transfer (2005)

    Google Scholar 

  16. Mayr, R.: Process rewrite systems. Information and Computation 156(1), 264–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Muller, D.E., Schupp, P.E.: Groups, the theory of ends, and context-free languages. Journal of Computer and System Sciences 26, 295–310 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Muller, D.E., Schupp, P.E.: The theory of ends, pushdown automata, and second-order logic. Theoretical Computer Science 37, 51–75 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grabmayer, C., Klop, J.W., Luttik, B. (2006). Some Remarks on Definability of Process Graphs. In: Baier, C., Hermanns, H. (eds) CONCUR 2006 – Concurrency Theory. CONCUR 2006. Lecture Notes in Computer Science, vol 4137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11817949_2

Download citation

  • DOI: https://doi.org/10.1007/11817949_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37376-6

  • Online ISBN: 978-3-540-37377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics