Abstract
This paper considers the feature space of DT-MRI as a differential manifold with an affine-invariant metric. We generalise Di Zenzo’s structure tensor to tensor-valued images for edge detection. To improve the quality of the edges, we develop a generalised Perona-Malik method for smoothing tensor images. We demonstrate our algorithm on both synthetic and real DT-MRI data.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Baser, P.J., Mattiello, J., LeBihan, D.: Mr. diffusion tensor spectroscopy and imaging. Biophysical Journal 66, 259–267 (1994)
O’Donnell, L., Grimson, W., Westin, C.-F.: Interface detection in diffusion tensor mri. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 360–367. Springer, Heidelberg (2004)
Feddern, C., Weickert, J., Burgeth, B.: Level-set methods for tensor-valued images. In: Proc. IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 65–72
Di Zenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing 33, 116–125 (1986)
Perona, P., Malik, J.: Scale-space and edge dectection using anisotropic diffusion. IEEE Trans. Pattern Anal. and Machine Intell. 12(7), 629–639 (1990)
Fletcher, P., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors. In: Proc. Computer Vision Approaches to Medical Image Analysis, ECCV Workshop (2004)
Lenglet, C., Rousson, M., Deriche, R., Faugeras, O.: A riemannian approach to diffusion tensor images segmentation. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 591–602. Springer, Heidelberg (2005)
Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. International Journal of Computer Vision 66(1), 41–66 (2006)
Moakher, M.: A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications 26(3), 735–747 (2005)
Cumani, A.: Edge detection in multispectral images. CVGIP: Graphical Models and Image Processing 53(1), 40–51 (1991)
Sochen, N., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. on Image Processing 7(3), 310–318 (1998)
Tschumperle, D.: PDE’s Based Regularization of Multivalued Images and Applications. PHD Thesis, University of Nice-Sophia Antipolis (2002)
Sapiro, G., Ringach, D.L.: Anisotropic diffusion of multivalued images with application to color filtering. IEEE Trans. on Image Processing 5(11), 1582–1586 (1996)
Blomgren, P., Chan, T.F.: Color tv: Total variation methods for restoration of vector-valued images. IEEE Trans. on Image Processing 7(3), 304–309 (1998)
Tang, B., Sapiro, G., Caselles, V.: Diffusion of general data on non-flat manifolds via harmonic maps theory: The direction diffusion case. International Journal of Computer Vision 36(2), 149–161 (2000)
Pardo, A., Sapiro, G.: Vector probability diffusion. IEEE Signal Processing Letters 8(4)
Catte, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Num. Anal. 29, 182–193 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, F., Hancock, E.R. (2006). Smoothing Tensor-Valued Images Using Anisotropic Geodesic Diffusion. In: Yeung, DY., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds) Structural, Syntactic, and Statistical Pattern Recognition. SSPR /SPR 2006. Lecture Notes in Computer Science, vol 4109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11815921_8
Download citation
DOI: https://doi.org/10.1007/11815921_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37236-3
Online ISBN: 978-3-540-37241-7
eBook Packages: Computer ScienceComputer Science (R0)