Representing Topological Structures Using Cell-Chains | SpringerLink
Skip to main content

Representing Topological Structures Using Cell-Chains

  • Conference paper
Geometric Modeling and Processing - GMP 2006 (GMP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4077))

Included in the following conference series:

Abstract

A new topological representation of surfaces in higher dimensions, “cell-chains” is developed. The representation is a generalization of Brisson’s cell-tuple data structure. Cell-chains are identical to cell-tuples when there are no degeneracies: cells or simplices with identified vertices. The proof of correctness is based on axioms true for maps, such as those in Brisson’s cell-tuple representation. A critical new condition (axiom) is added to those of Lienhardt’s n-G-maps to give “cell-maps”. We show that cell-maps and cell-chains characterize the same topological representations.

This work was supported in part by the National Science Foundation under grants CCR-9902091, CCR-9706572, ACI 0086093, CCR-0085982 and CCR-0122581.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumgardt, B.: Winged-edge polyhedron representation. Technical Report CS-320, Stanford University (1972)

    Google Scholar 

  2. Bern, M., Eppstein, D., Agarwal, P.K., Amenta, N., Chew, P., Dey, T., Dobkin, D.P., Edelsbrunner, H., Grimm, C., Guibas, L.J., Harer, J., Hass, J., Hicks, A., Johnson, C.K., Lerman, G., Letscher, D., Plassmann, P., Sedgwick, E., Snoeyink, J., Weeks, J., Yap, C., Zorin, D.: Emerging challenges in computational topology (1999)

    Google Scholar 

  3. Brisson, E.: Representing geometric structures in d dimensions: Topology and order. In: Symposium on Computational Geometry, pp. 218–227 (1989)

    Google Scholar 

  4. Brisson, E.: Representing geometric structures in d dimension: Topology and order. Discrete and Computational Geometry 9, 387–426 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bryant, R., Singerman, D.: Foundations of the theory of maps on surfaces with boundaries. Quarterly Journal of Mathematics 2(36), 17–41 (1985)

    Article  MathSciNet  Google Scholar 

  6. Cardoze, D., Cunha, A., Miller, G., Phillips, T., Walkington, N.: A Bezier-Based Approach to Unstructured Moving Meshes. In: 20th Symposium on Computational Geometry (2004)

    Google Scholar 

  7. Deville, M.O., Fischer, P.F., Mund, E.H.: High-Order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  8. Dobkin, D., Laszlo, M.: Primitives for the manipulation of three-dimensional subdivisions. In: Third ACM Symosium on Computational Geometry, pp. 86–99 (1987)

    Google Scholar 

  9. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, New York (1987)

    MATH  Google Scholar 

  10. Edmonds, J.R.: A combinatorial representation for polyhedral surfaces. Notices Amer. Mac. Soc. 7 (1960)

    Google Scholar 

  11. Farouki, R.T.: Closing the gap between cad model and downstream application. SIAM News 32(5) (June 1999)

    Google Scholar 

  12. Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions an the computation of voronoi diagrams. ACM Transactions on Graphics 4(2), 74–123 (1985)

    Article  MATH  Google Scholar 

  13. Halperin: Arrangements. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (1997)

    Google Scholar 

  14. Hoppe, H.: Progressive meshes. In: ACM SIGGRAPH, pp. 99–108 (1996)

    Google Scholar 

  15. Janich, K.: Topology. Springer, Heidelberg (1984)

    Google Scholar 

  16. Kinsey, L.C.: Topology of Surfaces. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  17. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Computer-Aided Design 23, 59–82 (1991)

    MATH  Google Scholar 

  18. Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal of Computational Geometry & Applications 4, 275–324 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lage, M., Lewiner, T., Lopes, H., Velho, L.: Chf: A scalable topological data structure for tetrahedral meshes. In: Proceedings of the XVIII Brazilian Symposium on Computer Graphics and Image Processing, pp. 349–356. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  20. Lèvy, B., Mallet, J.-L.: Cellular modeling in arbitrary dimension using generalized maps

    Google Scholar 

  21. Lundell, A., Weingram, S.: The Topology of CW Complexes. Van Nostrand Reinhold (1969)

    Google Scholar 

  22. Mäntylä: An Introduction to Solid Modeling. Computer Science Press, Inc., Rockville (1988)

    Google Scholar 

  23. Markov, A.A.: Insolubility of the problem of homeomorphy. In: Proceedings of the International Congress of Mathematics, pp. 300–306 (1958); Engish Translation by Afra Zomorodian

    Google Scholar 

  24. Moise, E.: Geometric Topology in Dimensions 2 and 3. Springer, Heidelberg (1977)

    MATH  Google Scholar 

  25. Piccinini, R., Fritsch, R.: Cellular Structures in Topology, Cambridge (1990)

    Google Scholar 

  26. Rossignac, J., O’Conner, M.: Sgc: A dimension independent model for pointers with internal structures and incomplete boundaries. In: IFIP/NSF Workshop on Geometric Modeling, pp. 145–180 (1989)

    Google Scholar 

  27. Rossignac, J.: Structured topological complexes: A featured-based api for non-manifold topologies. In: ACM Symposium on Solid Modeling and Applications, pp. 1–9 (1997)

    Google Scholar 

  28. The Sangria Project. Supported by NSF ITR ACI-0086093, http://cs.cmu.edu/~sangria

  29. Schleimer, S.: Sphere recognition lies in NP, http://front.math.ucdavis.edu/math.GT/0407047

  30. Tits, J.: A local approach to buildings. In: Davis, C., Grümbaum, B., Sherk, F.A. (eds.) The Geometric Vein, pp. 519–547. Springer, Heidelberg (1981)

    Google Scholar 

  31. The tumble software package. Supported by NSF ITR ACI-0086093, http://rioja.sangria.cs.cmu.edu/

  32. Tutte, W.T.: What is a map? In: New Directions in the Theory of Graphs, pp. 309–325. Acad. Press, San Diego (1973)

    Google Scholar 

  33. Tutte, W.T.: Graph Theory. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  34. Vince, A.: Combinatorial maps. Journal of Combinatorial Theory B 34, 1–21 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Vince, A.: Regular combinatorial maps. Journal of Combinatorial Theory B 34, 256–277 (1983)

    Article  Google Scholar 

  36. Volodin, I.A., Kuznetsov, V.E., Fomenko, A.T.: The problem of discriminating the standard sphere. Russian Mathematical Surveys 29(5), 71–172 (1974)

    Article  Google Scholar 

  37. Weiler, K.: Edge-based data structures for solid modeling in curve-surface environment. IEEE Computer Graphics and Applictions 5(1), 21–40 (1985)

    Article  Google Scholar 

  38. Weiler, K.: Topological Structures for Geometric Modeling. PhD thesis, Rensselaer Polytechnic Institute, Troy. N.Y. (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cardoze, D.E., Miller, G.L., Phillips, T. (2006). Representing Topological Structures Using Cell-Chains. In: Kim, MS., Shimada, K. (eds) Geometric Modeling and Processing - GMP 2006. GMP 2006. Lecture Notes in Computer Science, vol 4077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11802914_18

Download citation

  • DOI: https://doi.org/10.1007/11802914_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36711-6

  • Online ISBN: 978-3-540-36865-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics