Objectionable Image Detection by ASSOM Competition | SpringerLink
Skip to main content

Objectionable Image Detection by ASSOM Competition

  • Conference paper
Image and Video Retrieval (CIVR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4071))

Included in the following conference series:

  • 802 Accesses

Abstract

This article presents a method aiming at filtering objectionable image contents. This kind of problem is very similar to object recognition and image classification. In this paper, we propose to use Adaptive-Subspace Self-Organizing Maps (ASSOM) to generate invariant pornographic features. To reach this goal, we construct local signatures associated to salient patches according to adult and benign databases. Then, we feed these vectors into each specialized ASSOM neural network. At the end of the learning step, each neural unit is tuned to a particular local signature prototype. Thus, each input image generates two neural maps that can be represented by two activation vectors. A supervised learning is finally done by a Normalized Radial Basis Function (NRBF) network to decide the image category. This scheme offers very promising results for image classification with a percentage of 87.8% of correct classification rates.

This work was carried out during the tenure of a MUSCLE Internal fellowship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Forsyth, D.A., Fleck, M.M.: Identifying nude pictures. IEEE WACV 103–108 (1996)

    Google Scholar 

  2. Wang, J.Z., Li, J., Wiederhold, G., Firschein, O.: Classifying Objectionable Websites Based on Image Content. In: Plagemann, T., Goebel, V. (eds.) IDMS 1998. LNCS, vol. 1483, p. 113. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  3. Jones, M.J., Rehg, J.M.: Statistical color models with application to skin detection. IJCV 46(1), 81–96 (2002)

    Article  MATH  Google Scholar 

  4. Bosson, A., Cawley, G.C., Chan, Y., Harvey, R.: Non-retrieval: Blocking pornographic images. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 50–60. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Zheng, H., Daoudi, M., Jedynak, B.: Blocking adult images based on statistical skin detection. ELCVIA 4(2), 1–14 (2004)

    Google Scholar 

  6. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  7. Hoffman, J.E., Subramanium, B.: The role of visual attention in saccadic eye movements. Perception and Psychophysics 57, 787–795 (1995)

    Article  Google Scholar 

  8. Tversky, A.: Features of similarity. Psychological Review 4(84), 327–352 (1977)

    Article  Google Scholar 

  9. Duda, R.O., Stork, D.G., Hart, P.E.: Pattern Classification. Wiley Interscience, Chichester (2000)

    Google Scholar 

  10. Zhang, B., Fu, M., Yan, H., Jabri, M.A.: Handwritten digit recognition by adaptive-subspace self-organizing map (assom). IEEE Transactions on Neural Networks 4(10), 939–945 (1999)

    Article  Google Scholar 

  11. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV (2004)

    Google Scholar 

  12. Quelhas, P., Monay, F., Odobez, J.M., Gatica-Perez, D., Tuytelaars, T., Gool, L.V.: Modeling scenes with local descriptors and latent aspects. In: ICCV, pp. 883–890 (2005)

    Google Scholar 

  13. Laurent, C., Laurent, N., Maurizot, M., Dorval, T.: In depth analysis and evaluation of saliency-based color image indexing methods using wavelet salient features. Multimedia Tools and Application (2004)

    Google Scholar 

  14. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. Fourth Alvey Vision Conf., pp. 147–151 (1988)

    Google Scholar 

  15. Bres, S., Jolion, J.M.: Detection of interest points for image indexation. In: 3rd Int. Conf. on Visual Information Systems, pp. 427–434 (1999)

    Google Scholar 

  16. Shapiro, J.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing 12(41), 3345–3462 (1993)

    Google Scholar 

  17. Geusebroek, J.M., Boomgrad, R., Smeulders, W.M., Geerts, H.: Color invariance. IEEE Transactions on PAMI 12(23), 1338–1350 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lefebvre, G., Zheng, H., Laurent, C. (2006). Objectionable Image Detection by ASSOM Competition. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds) Image and Video Retrieval. CIVR 2006. Lecture Notes in Computer Science, vol 4071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11788034_21

Download citation

  • DOI: https://doi.org/10.1007/11788034_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36018-6

  • Online ISBN: 978-3-540-36019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics