On the Bipartite Unique Perfect Matching Problem | SpringerLink
Skip to main content

On the Bipartite Unique Perfect Matching Problem

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4051))

Included in the following conference series:

Abstract

In this note, we give tighter bounds on the complexity of the bipartite unique perfect matching problem, bipartite-UPM. We show that the problem is in C = L and in NL  ⊕ L, both subclasses of NC 2.

We also consider the (unary) weighted version of the problem. We show that testing uniqueness of the minimum-weight perfect matching problem for bipartite graphs is in \({\rm \bf L}^{{\rm \bf C_=L}}\) and in NL  ⊕ L.

Furthermore, we show that bipartite-UPM is hard for NL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, E., Arvind, V., Mahajan, M.: Arithmetic complexity, Kleene closure, and formal power series. Theory Comput. Syst. 36(4), 303–328 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2), 99–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Allender, E., Reinhardt, K., Zhou, S.: Isolation, matching and counting: uniform and nonuniform upper bounds. Journal of Computer and System Sciences 59, 164–181 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chandra, A., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM Journal on Computing 13(2), 423–439 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  5. Edmonds, J.: Maximum matching and a polyhedron with 0-1 vertices. Journal of Research National Bureau of Standards 69, 125–130 (1965)

    MATH  MathSciNet  Google Scholar 

  6. Gabow, H.N., Kaplan, H., Tarjan, R.E.: Unique maximum matching algorithms. In: 31st Symposium on Theory of Computing (STOC), pp. 70–78. ACM Press, New York (1999)

    Google Scholar 

  7. Hoang, T.M., Thierauf, T.: The complexity of the characteristic and the minimal polynomial. Theoretical Computer Science 295, 205–222 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Immerman, N.: Nondeterministic space is closed under complementation. SIAM Journal on Computing 17(5), 935–938 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Karp, R.M., Upfal, E., Wigderson, A.: Constructing a perfect matching is in random NC. Combinatorica 6, 35–48 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kozen, D., Vazirani, U., Vazirani, V.: NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching. In: Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 496–503. Springer, Heidelberg (1985)

    Google Scholar 

  11. Kozen, D., Vazirani, U., Vazirani, V.: NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching. Technical Report TR86-799, Cornell University (1986)

    Google Scholar 

  12. Lovasz, L.: On determinants, matchings and random algorithms. In: Budach, L. (ed.) Proceedings of Conference on Fundamentals of Computing Theory, pp. 565–574. Akademia-Verlag (1979)

    Google Scholar 

  13. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–131 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rabin, M., Vazirani, V.: Maximum matchings in general graphs through randomization. Journal of Algorithms 10(4), 557–567 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  15. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27, 701–717 (1980)

    Article  MATH  Google Scholar 

  16. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26(3), 279–284 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14(8), 691–699 (1998)

    Article  Google Scholar 

  18. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoang, T.M., Mahajan, M., Thierauf, T. (2006). On the Bipartite Unique Perfect Matching Problem. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_40

Download citation

  • DOI: https://doi.org/10.1007/11786986_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35904-3

  • Online ISBN: 978-3-540-35905-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics