Abstract
In this note, we give tighter bounds on the complexity of the bipartite unique perfect matching problem, bipartite-UPM. We show that the problem is in C = L and in NL ⊕ L, both subclasses of NC 2.
We also consider the (unary) weighted version of the problem. We show that testing uniqueness of the minimum-weight perfect matching problem for bipartite graphs is in \({\rm \bf L}^{{\rm \bf C_=L}}\) and in NL ⊕ L.
Furthermore, we show that bipartite-UPM is hard for NL.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Allender, E., Arvind, V., Mahajan, M.: Arithmetic complexity, Kleene closure, and formal power series. Theory Comput. Syst. 36(4), 303–328 (2003)
Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2), 99–126 (1999)
Allender, E., Reinhardt, K., Zhou, S.: Isolation, matching and counting: uniform and nonuniform upper bounds. Journal of Computer and System Sciences 59, 164–181 (1999)
Chandra, A., Stockmeyer, L., Vishkin, U.: Constant depth reducibility. SIAM Journal on Computing 13(2), 423–439 (1984)
Edmonds, J.: Maximum matching and a polyhedron with 0-1 vertices. Journal of Research National Bureau of Standards 69, 125–130 (1965)
Gabow, H.N., Kaplan, H., Tarjan, R.E.: Unique maximum matching algorithms. In: 31st Symposium on Theory of Computing (STOC), pp. 70–78. ACM Press, New York (1999)
Hoang, T.M., Thierauf, T.: The complexity of the characteristic and the minimal polynomial. Theoretical Computer Science 295, 205–222 (2003)
Immerman, N.: Nondeterministic space is closed under complementation. SIAM Journal on Computing 17(5), 935–938 (1988)
Karp, R.M., Upfal, E., Wigderson, A.: Constructing a perfect matching is in random NC. Combinatorica 6, 35–48 (1986)
Kozen, D., Vazirani, U., Vazirani, V.: NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching. In: Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 496–503. Springer, Heidelberg (1985)
Kozen, D., Vazirani, U., Vazirani, V.: NC algorithms for comparability graphs, interval graphs, and testing for unique perfect matching. Technical Report TR86-799, Cornell University (1986)
Lovasz, L.: On determinants, matchings and random algorithms. In: Budach, L. (ed.) Proceedings of Conference on Fundamentals of Computing Theory, pp. 565–574. Akademia-Verlag (1979)
Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–131 (1987)
Rabin, M., Vazirani, V.: Maximum matchings in general graphs through randomization. Journal of Algorithms 10(4), 557–567 (1989)
Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. Journal of the ACM 27, 701–717 (1980)
Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26(3), 279–284 (1988)
Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14(8), 691–699 (1998)
Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoang, T.M., Mahajan, M., Thierauf, T. (2006). On the Bipartite Unique Perfect Matching Problem. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_40
Download citation
DOI: https://doi.org/10.1007/11786986_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35904-3
Online ISBN: 978-3-540-35905-0
eBook Packages: Computer ScienceComputer Science (R0)