Abstract
Data aggregation is a central principle underlying many applications in computer science, from artificial intelligence to data security and privacy. Microaggregation is a special clustering problem where the goal is to cluster a set of points into groups of at least k points in such a way that groups are as homogeneous as possible. A usual homogeneity criterion is the minimization of the within-groups sum of squares. Microaggregation appeared in connection with anonymization of statistical databases. When discussing microaggregation for information systems, points are database records. This paper extends the use of microaggregation for k-anonymity to implement the recent property of p-sensitive k-anonymity in a more unified and less disruptive way. Then location privacy is investigated: two enhanced protocols based on a trusted-third party (TTP) are proposed and thereafter microaggregation is used to design a new TTP-free protocol for location privacy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dalenius, T.: Finding a needle in a haystack - or identifying anonymous census records. Journal of Official Statistics 2(3), 329–336 (1986)
Defays, D., Anwar, N.: Micro-aggregation: a generic method. In: Proceedings of the 2nd International Symposium on Statistical Confidentiality, Luxemburg, Eurostat, pp. 69–78 (1995)
Defays, D., Nanopoulos, P.: Panels of enterprises and confidentiality: the small aggregates method. In: Proc. of 1992 Symposium on Design and Analysis of Longitudinal Surveys, Statistics Canada, Ottawa, pp. 195–204 (1993)
Domingo-Ferrer, J., Mateo-Sanz, J.M.: Practical data-oriented microaggregation for statistical disclosure control. IEEE Transactions on Knowledge and Data Engineering 14(1), 189–201 (2002)
Domingo-Ferrer, J., Mateo-Sanz, J.M., Oganian, A., Torres, À.: On the security of microaggregation with individual ranking: analytical attacks. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 477–492 (2002)
Domingo-Ferrer, J., Sebé, F., Solanas, A.: A polynomial-time approximation to optimal multivariate microaggregation (manuscript, 2005)
Domingo-Ferrer, J., Torra, V.: A quantitative comparison of disclosure control methods for microdata. In: Doyle, P., Lane, J.I., Theeuwes, J.J.M., Zayatz, L. (eds.) Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, pp. 111–134. North-Holland, Amsterdam (2001), http://vneumann.etse.urv.es/publications/bcpi
Domingo-Ferrer, J., Torra, V.: Ordinal, continuous and heterogenerous k-anonymity through microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212 (2005)
Edwards, A.W.F., Cavalli-Sforza, L.L.: A method for cluster analysis. Biometrics 21, 362–375 (1965)
Gedik, B., Liu, L.: A customizable k-anonymity model for protecting location privacy. In: Proceedings of the International Conference on Distributed Computing Systems-ICDCS (2005)
Gordon, A.D., Henderson, J.T.: An algorithm for euclidean sum of squares classification. Biometrics 33, 355–362 (1977)
Hansen, P., Jaumard, B., Mladenovic, N.: Minimum sum of squares clustering in a low dimensional space. Journal of Classification 15, 37–55 (1998)
Hansen, S.L., Mukherjee, S.: A polynomial algorithm for optimal univariate microaggregation. IEEE Transactions on Knowledge and Data Engineering 15(4), 1043–1044 (2003)
Hundepool, A., Van de Wetering, A., Ramaswamy, R., Franconi, L., Capobianchi, A., DeWolf, P.-P., Domingo-Ferrer, J., Torra, V., Brand, R., Giessing, S.: μ-ARGUS version 4.0 Software and User’s Manual. Statistics Netherlands, Voorburg NL (May 2005), http://neon.vb.cbs.nl/casc
Laszlo, M., Mukherjee, S.: Minimum spanning tree partitioning algorithm for microaggregation. IEEE Transactions on Knowledge and Data Engineering 17(7), 902–911 (2005)
Lenz, R., Vorgrimler, D.: Matching german turnover tax statistics. Technical Report FDZ-Arbeitspapier Nr. 4, Statistische Ämter des Bundes und der Länder-Forschungsdatenzentren (2005)
Mokbel, M.F.: Towards privacy-aware location-based database servers. In: Proceedings of the Second International Workshop on Privacy Data Management-PDM 2006, Atlanta, GA. IEEE Computer Society Press, Los Alamitos (2006)
Oganian, A., Domingo-Ferrer, J.: On the complexity of optimal microaggregation for statistical disclosure control. Statistical Journal of the United Nations Economic Comission for Europe 18(4), 345–354 (2001)
Pagliuca, D., Seri, G.: Some results of individual ranking method on the system of enterprise accounts annual survey. Esprit SDC Project, Deliverable MI-3/D2 (1999)
Rosemann, M.: Erste Ergebnisse von vergleichenden Untersuchungen mit anonymisierten und nicht anonymisierten Einzeldaten am Beispiel der Kostenstrukturerhebung und der Umsatzsteuerstatistik. In: Ronning, G., Gnoss, R. (eds.) Anonymisierung wirtschaftsstatistischer Einzeldaten, Wiesbaden, Germany, pp. 154–183. Statistisches Bundesamt (2003)
Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Technical report, SRI International (1998)
Sande, G.: Exact and approximate methods for data directed microaggregation in one or more dimensions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 459–476 (2002)
Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10(5), 571–588 (2002)
Sweeney, L.: k-anonimity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge Based Systems 10(5), 557–570 (2002)
Torra, V.: Microaggregation for Categorical Variables: A Median Based Approach. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 162–174. Springer, Heidelberg (2004)
Truta, T.M., Vinay, B.: Privacy protection: p-sensitive k-anonymity property (manuscript, 2005)
UNECE. United nations economic commission for europe. questionnaire on disclosure and confidentiality - summary of replies. In: 1st Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Thessaloniki, Greece (1999)
UNECE. United nations economic commission for europe. questionnaire on disclosure and confidentiality - summary of replies. In: 2nd Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Skopje, Macedonia (2001)
Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963)
Warrior, J., McHenry, E., McGee, K.: They know where you are. IEEE Spectrum 40(7), 20–25 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Domingo-Ferrer, J. (2006). Microaggregation for Database and Location Privacy. In: Etzion, O., Kuflik, T., Motro, A. (eds) Next Generation Information Technologies and Systems. NGITS 2006. Lecture Notes in Computer Science, vol 4032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780991_10
Download citation
DOI: https://doi.org/10.1007/11780991_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35472-7
Online ISBN: 978-3-540-35473-4
eBook Packages: Computer ScienceComputer Science (R0)