Polygonal Approximation of Digital Curves Using a Multi-objective Genetic Algorithm | SpringerLink
Skip to main content

Polygonal Approximation of Digital Curves Using a Multi-objective Genetic Algorithm

  • Conference paper
Graphics Recognition. Ten Years Review and Future Perspectives (GREC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3926))

Included in the following conference series:

  • 642 Accesses

Abstract

In this paper, a polygonal approximation approach based on a multi-objective genetic algorithm is proposed. In this method, the optimization/exploration algorithm locates breakpoints on the digital curve by minimizing simultaneously the number of breakpoints and the approximation error. Using such an approach, the algorithm proposes a set of solutions at its end. This set which is called the Pareto Front in the multi objective optimization field contains solutions that represent trade-offs between the two classical quality criteria of polygonal approximation : the Integral Square Error (ISE) and the number of vertices. The user may choose his own solution according to its objective. The proposed approach is evaluated on curves issued from the literature and compared with many classical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Salotti, M.: An efficient algorithm for the optimal polygonal approximation of digitized curves. PRL 22, 215–221 (2001)

    Article  MATH  Google Scholar 

  2. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. CGIP 1, 291–297 (1972)

    Google Scholar 

  3. Pavlidis, T., Horowitz, S.L.: Segmentation of plane curves. IEEE Transaction on Computers 23, 860–870 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wall, K., Danielsson, P.E.: A fast sequential method for polygonal approximation of digitized curves. CVGIP 28, 220–227 (1984)

    Google Scholar 

  5. Gupta, A., Chaudhury, S., Parthasarathy, G.: A new approach for aggregating edge points into line segments. PR 26, 1069–1086 (1993)

    Google Scholar 

  6. Hu, J., Yan, H.: Polygonal approximation of digital curves based on the principles of perceptual organization. PR 30, 701–718 (2002)

    Google Scholar 

  7. Teh, C., Chin, R.T.: On the detection of dominant points on digital curves. IEEE transaction on PAMI 23, 859–872 (1989)

    Article  Google Scholar 

  8. Ansari, N., Delp, E.J.: On detecting dominant points. PR 24, 441–451 (1991)

    Google Scholar 

  9. Ray, B.K., Ray, K.S.: An algorithm for detecting dominant points and polygonal approximation of digitized curves. PRL 13, 849–856 (1992)

    Article  Google Scholar 

  10. Ray, B.K., Ray, K.S.: Detection of significant points and polygonal approximation of digitized curves. PRL 12, 443–452 (1992)

    Article  Google Scholar 

  11. Cornic, P.: Another look at the dominant point detection of digitized curves. PRL 18, 13–25 (1997)

    Article  MATH  Google Scholar 

  12. Marji, M., Siy, P.: A new algorithm for dominant points detection and polygonization of digital curves. PR 36, 2239–2251 (2003)

    MATH  Google Scholar 

  13. Chung, P.C., Tsai, C.T., Chen, E.L., Sun, Y.N.: Polygonal approximation using a competitive Hopfield neural network. PR 27, 1505–1512 (1994)

    Google Scholar 

  14. Perez, J.C., Vidal, E.: Optimum polygonal approximation of digitized curves. PRL 15, 743–750 (1994)

    Article  MATH  Google Scholar 

  15. Horng, J.H., Li, J.T.: An automatic and efficient dynamic programming algorithm for polygonal approximation of digital curves. PRL 23, 171–182 (2002)

    Article  MATH  Google Scholar 

  16. Yin, P.Y.: A new method for polygonal approximation of digital curves. PRL 19, 1017–1026 (1998)

    Article  MATH  Google Scholar 

  17. Huang, S.C., Sun, Y.N.: Polygonal approximation using genetic algorithm. PR 32, 1409–1420 (1999)

    Google Scholar 

  18. Sarkar, B., Singh, L.K., Sarkar, D.: Approximation of digital curves with line segments and circular arcs using genetic algorithms. PRL 24, 2585–2595 (2003)

    Article  Google Scholar 

  19. Yin, P.Y.: A new circle/ellipse detector using genetic algorithm. PRL 20, 731–740 (1999)

    Article  MathSciNet  Google Scholar 

  20. Deb, K.: Multi-Objective optimization using Evolutionary algorithms. Wiley, London (2001)

    MATH  Google Scholar 

  21. Schaffer, J.D., Grefenstette, J.J.: Multiobjective learning via genetic algorithms. In: Proceedings of the 9th IJCAI, pp. 593–595 (1985)

    Google Scholar 

  22. Fonseca, C.M., Fleming, P.J.: Genetic algorithm for multi-objective optimization: formulation, discussion and generalization. In: The proceedings of the fifth ICGA, pp. 416–423 (1993)

    Google Scholar 

  23. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithm. EC 2, 221–248 (1994)

    Google Scholar 

  24. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on EC 6, 182–197 (2000)

    Google Scholar 

  25. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. EC 8, 149–172 (2000)

    Google Scholar 

  26. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative study and the strength pareto approach. IEEE Transactions on EC 3, 257–271 (1999)

    Google Scholar 

  27. Coello Coello, C.A.: A short tutorial on Evolutionary Multiobjective Optimisation. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 21–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Chafekar, D., Xuan, J., Rasheed, K.: Constrained Multi-objective Optimization Using Steady State Genetic Algorithms. In: Proceedings of GECC, pp. 813–824 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Locteau, H., Raveaux, R., Adam, S., Lecourtier, Y., Heroux, P., Trupin, E. (2006). Polygonal Approximation of Digital Curves Using a Multi-objective Genetic Algorithm. In: Liu, W., Lladós, J. (eds) Graphics Recognition. Ten Years Review and Future Perspectives. GREC 2005. Lecture Notes in Computer Science, vol 3926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11767978_27

Download citation

  • DOI: https://doi.org/10.1007/11767978_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34711-8

  • Online ISBN: 978-3-540-34712-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics