Abstract
A novel method for kernel design of a quadratic time frequency distribution (TFD) as the initial step for neural source estimation is proposed. The kernel is constructed based on the product ambiguity function (AF), which efficiently suppresses cross terms and noise in the ambiguity domain. In order to reduce the influence from the strong signal to the weak signal, an iterative approach is implemented. Simulation results validate the method and demonstrate suppression of cross terms and noise, and high resolution in the time frequency domain.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sun, M., Qian, S., Yan, X., Baumann, S.B., Xia, X.G., Dahl, R.E., Ryan, N.D., Sclabassi, R.J.: Localizing Functional Activity In The Brain Through Time-Frequency Analysis and Synthesis of The EEG. Proc. IEEE 84(9), 1302–1311 (1996)
Sekihara, K., Nagarajan, S., Poeppel, D., Miyashita, Y.: Time-Frequency MEG-MUSIC Algorithm. IEEE Trans. Medical Imaging 18(1), 92–97 (1999)
Sekihara, K., Nagarajan, S., Poeppel, D., Miyauchi, S., Fujimaki, N., Koizumi, H., Miyashita, Y.: Estimating Neural Sources From Each Time-Frequency Component of Magnetoencephalographic Data. IEEE Trans. Biomedical Engineering 47(5), 642–653 (2000)
Choi, H.I., Williams, W.J.: Improved Time-Frequency Representation of Multicomponent Signals Using the Exponential Kernels. IEEE Trans. Signal Processing 37(6), 862–871 (1989)
Barkat, B., Boashash, B.: A High-Resolution Quadratic Time-Frequency Distribution For Multicomponent Signal Analysis. IEEE Trans. Signal Processing 49(10), 2232–2239 (2001)
Ristic, B., Boashash, B.: Kernel Design For Time-Frequency Signal Analysis Using Radon Transform. IEEE Trans. Signal Processing 41(5), 1996–2008 (1993)
Baraniuk, R.G., Jones, D.L.: A Radially Gaussian Signal Dependent Time Frequency Representation. In: Proc. IEEE Int. Conf. Acoust. Speech, Signal Processing, vol. 5, pp. 3181–3184. IEEE Press, Los Alamitos (1991)
Cohen, L.: Time-Frequency Analysis. Prentice Hall, Englewood Cliffs (1995)
Barbarossa, S., Scaglione, A., Giannakis, G.B.: Product High-order Ambiguity Function For Multicomponent Polynomial-Phase Signal Modeling. IEEE Trans. Signal Processing 46(3), 691–708 (1998)
Ikram, M.Z., Abed-Meraim, K., Hua, Y.: Estimating The Parameters of Chirp Signals: An Iterative Approach. IEEE Trans. Signal Processing 46(12), 3436–3441 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, P., Yang, J., Zhang, ZL., Wang, G., Mo, Q. (2006). A Signal-Dependent Quadratic Time Frequency Distribution for Neural Source Estimation. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760023_103
Download citation
DOI: https://doi.org/10.1007/11760023_103
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34437-7
Online ISBN: 978-3-540-34438-4
eBook Packages: Computer ScienceComputer Science (R0)