Support Vector Machines with Beta-Mixing Input Sequences | SpringerLink
Skip to main content

Support Vector Machines with Beta-Mixing Input Sequences

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

Abstract

This note mainly focuses on a theoretical analysis of support vector machines with beta-mixing input sequences. The explicit bounds are derived on the rate at which the empirical means converge to their true values when the underlying process is beta-mixing. The uniform convergence approach is used to estimate the convergence rates of the support vector machine algorithms with beta-mixing inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of Reproducing Kernels. Trans. Amer. Math. Soc. 68 (1950) 337–404

    Article  MATH  MathSciNet  Google Scholar 

  2. Boser, B.E., Guyon, I., Vapnik, V.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of the Fifth Annual Workshop of Computational Learning Theory, Vol.5, Pittsburgh, ACM (1992) 144–152

    Chapter  Google Scholar 

  3. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2 (1998) 121–167

    Article  Google Scholar 

  4. Chen, D.R., Wu, Q., Ying, Y.M., Zhou, D.X.: Support Vector Machine Soft Margin Classifiers: Error Analysis. J. of Machine Learning Research 5 (2004) 1143–1175

    MathSciNet  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector Networks. Machine Learning 20 (1995) 273–297

    MATH  Google Scholar 

  6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press (2000)

    Google Scholar 

  7. Cucker, F., Smale, S.: On the Mathematical Foundations of Learning. Bull. Amer. Math. Soc. 39 (2002) 1–49

    Article  MATH  MathSciNet  Google Scholar 

  8. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer-Verlag, Berlin Heidelberg New York (1996)

    MATH  Google Scholar 

  9. Fisher, R.A.: The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7 (1936) 179–188

    Google Scholar 

  10. Karandikara, R.L., Vidyasagar, M.: Rates of Uniform Convergence of Empirical Means with Mixing Processes. Statistics & Probability Letters 58 (2002) 297–307

    Article  MathSciNet  Google Scholar 

  11. Lin, Y.: Support Vector Machines and the Bayes Rule in Classification. Data Mining and Knowledge Discovery 6, 259–275 (2002)

    Article  MathSciNet  Google Scholar 

  12. Nobel, A., Dembo, A.: A Note on Uniform Laws of Averages for Dependent Processes. Statistics & Probability Letters 17 (1993) 169–172

    Article  MATH  MathSciNet  Google Scholar 

  13. Rosenblatt, F.: Principles of Neurodynamics. Spartan Book, New York (1962)

    MATH  Google Scholar 

  14. Smola, A.J., Schölkopf, B.: A Tutorial on Support Vector Regression. Statistics and Computing 14 (2004) 199–222

    Article  MathSciNet  Google Scholar 

  15. Steinwart, I.: Support Vector Machines are Universally Consistent. J. Complexity 18 (2002) 768–791

    Article  MATH  MathSciNet  Google Scholar 

  16. Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer-Verlag, Berlin Heidelberg New York (1982)

    MATH  Google Scholar 

  17. Vapnik, V.: Statistical Learning Theory. John Wiley & Sons (1998)

    MATH  Google Scholar 

  18. Vidyasagar, M.: Learning and Generalization with Applications to Neural Networks. Springer-Verlak, Berlin Heidelberg New York (2003)

    Google Scholar 

  19. Wu, Q., Ying, Y.M., Zhou, D.X.: Learning Theory: From Regression to Classification. In: Jetter K., Buhmann M., Haussmann W., Schaback R., Stoeckler J. (eds.): Topics in Multivariate Approximation and Interpolation, Elsevier (2006) 101-133

    Google Scholar 

  20. Yu, B.: Rates of Convergence of Empirical Processes for Mixing Sequences. Ann. Probab. 22 (1994) 94–116

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhang, T.: Statistical Behavior and Consistency of Classification Methods Based on Convex Risk Minimization. Ann. Statis. 32 (2004) 56–85

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Wan, C. (2006). Support Vector Machines with Beta-Mixing Input Sequences. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_136

Download citation

  • DOI: https://doi.org/10.1007/11759966_136

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics