Abstract
Complex stochastic Boolean systems, depending on a large number n of statistically independent random Boolean variables, appear in many different scientific, technical or social areas. Each one of the 2n binary states associated to such systems is denoted by its corresponding binary n-tuple of 0s and 1s, \(\left( u_{1},\ldots,u_{n}\right) \), and it has a certain occurrence probability \(\Pr\left\{ \left( u_{1},\ldots ,u_{n}\right) \right\} \). The ordering between the 2n binary n-tuple probabilities, \(\Pr\left\{ \left( u_{1},\ldots,u_{n}\right) \right\} \), can be illustrated by a directed graph which “scales” them by decreasing order, the so-called intrinsic order graph. In this context, this paper provides a simple algorithm for iteratively drawing the intrinsic order graph, for any complex stochastic Boolean system and for any number n of independent random Boolean variables. The presentation is self-contained.
Partially supported by MEC (Spain) and FEDER. Grant contract: CGL2004-06171-C03-02/CLI.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
González, L.: A new method for ordering binary states probabilities in reliability and risk analysis. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2329, pp. 137–146. Springer, Heidelberg (2002)
González, L.: N-tuples of 0s and 1s: Necessary and sufficient conditions for intrinsic order. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 937–946. Springer, Heidelberg (2003)
González, L., Galván, B., García, D.: Sobre el análisis computacional de funciones Booleanas estocásticas de muchas variables. In: González, L., Sendra, J.R. (eds.) Proc. Primer Encuentro de Álgebra Computacional y Aplicaciones (EACA 1995), Santander, pp. 45–55 (1995)
González, L., García, D., Galván, B.J.: An intrinsic order criterion to evaluate large, complex fault trees. IEEE Trans. Reliability 53(3), 297–305 (2004)
Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)
Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics, Distribution Theory, vol. 1. Oxford University Press, New York (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
González, L. (2006). A Picture for Complex Stochastic Boolean Systems: The Intrinsic Order Graph. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science – ICCS 2006. ICCS 2006. Lecture Notes in Computer Science, vol 3993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758532_42
Download citation
DOI: https://doi.org/10.1007/11758532_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34383-7
Online ISBN: 978-3-540-34384-4
eBook Packages: Computer ScienceComputer Science (R0)